DEV Community

supachai jaturaprom
supachai jaturaprom

Posted on

[AI-100.EP1] - Introduction to AI.

Introduction to AI (Artificial Intelligence)

การมาของ Artificial Intelligence (AI) นั้น ช่วยให้เราสร้างโปรแกรมหรือซอฟต์แวร์ที่น่าสนใจและไม่คิดว่าจะสามารถทำได้ เช่น การปรับปรุงการดูแลสุขภาพ, ช่วยให้ผู้คนเอาชนะความด้อยโอกาสทางกายภาพ, เสริมสร้างโครงสร้างพื้นฐาน(Infrastcture) ที่ฉลาดขึ้น, สร้างประสบการณ์ใหม่ๆ ด้านความบันเทิงต่างๆ และแม้แต่ช่วยโลกของเรา!

AI คืออะไร ?

ให้เข้าใจง่ายๆ, AI คือ โปรแกรมหรือซอฟแวร์ที่เลียนแบบพฤติกรรมและความสามารถต่างๆ ของมนุษย์

Robot and Baby

ปัญญาประดิษฐ์ (Artificial Intelligence, AI) คือสาขาวิชาในด้านวิทยาการคอมพิวเตอร์ที่เน้นการพัฒนาคอมพิวเตอร์หรือเครื่องมือคอมพิวเตอร์ให้สามารถทำงานหรือปฏิบัติการที่ต้องการความคิดและความสามารถคล้ายมนุษย์ได้ โดยคอมพิวเตอร์ในระบบ AI จะถูกออกแบบและโปรแกรมให้สามารถประมวลผลข้อมูล, ตัดสินใจ, แก้ปัญหา, และเรียนรู้จากข้อมูลด้วยตัวเองโดยอัตโนมัติ โดยไม่ต้องมีคำสั่งทางโปรแกรมเฉพาะหรือกฎระเบียบที่กำหนดไว้ล่วงหน้า. AI มีการนำไปใช้ในหลายด้านของชีวิตประจำวันและอุตสาหกรรมต่าง ๆ เช่น ระบบค้นหาบนเว็บ, รถยนต์ขับเอง, การแก้ปัญหาทางการแพทย์, การทำงานในสายงานการเงิน, การวิเคราะห์ข้อมูลธุรกิจ, และอื่น ๆ โดยมีศักยภาพในการเปลี่ยนแปลงและเป้าหมายในการพัฒนาเพิ่มเติมในอนาคต.

ลองดู VDO เกี่ยวกับประโยชน์ของ AI

Keywords of AI :

1. Machine learning

This is often the foundation for an AI system, and is the way we "teach" a computer model to make predictions and draw conclusions from data.

machine_learning_concept

Machine learning (การเรียนรู้ของเครื่อง) คือสาขาหนึ่งของปัญญาประดิษฐ์ที่เน้นการพัฒนาโมเดลคอมพิวเตอร์ให้สามารถเรียนรู้และปรับตัวเองจากข้อมูล โดยไม่ต้องโปรแกรมโดยตรงให้คำสั่งเฉพาะหรือกำหนดกฎระเบียบให้กับคอมพิวเตอร์. การเรียนรู้ของเครื่องใช้วิธีการทางคณิตศาสตร์และสถิติในการวิเคราะห์และเรียนรู้จากข้อมูลเพื่อให้เครื่องมีความสามารถในการทำงานหรือการตัดสินใจโดยอาศัยข้อมูลที่มีอยู่เป็นหลัก. Machine learning สามารถนำไปใช้ในหลายด้านของการประยุกต์ใช้ เช่น:

  • การจำแนกและการจัดกลุ่มข้อมูล: การแยกประเภทของข้อมูลออกเป็นกลุ่มหรือหมวดหมู่ต่าง ๆ เช่นการจำแนกอีเมลของลูกค้าเป็นสแปมและไม่ใช่สแปม.
  • การทำนาย: การใช้โมเดลเรียนรู้ของเครื่องเพื่อทำนายผลลัพธ์หรือเหตุการณ์ในอนาคต เช่นการทำนายราคาหุ้นหรืออากาศในวันพรุ่งนี้.
  • การค้นหาข้อมูล: การใช้เรนเดอร์และการจัดเรียงข้อมูลเพื่อค้นหาข้อมูลที่เกี่ยวข้องหรือสรุปข้อมูลจากข้อมูลมหาศาล.
  • การปรับปรุงการตัดสินใจ: การใช้ระบบเรียนรู้ของเครื่องในการช่วยในการตัดสินใจทางธุรกิจหรือการวางแผน.

โดยที่ Machine learning มีหลายวิธีการและอัลกอริทึมต่าง ๆ ซึ่งรวมถึงการเรียนรู้แบบแม่นยำ (supervised learning), การเรียนรู้แบบไม่มีผู้สอน (unsupervised learning), การเรียนรู้แบบเสริมกัน (reinforcement learning), และอื่น ๆ อีกมาก. การนำเสนอข้อมูลและการเลือกโมเดลที่เหมาะสมกับงานที่ต้องการเป็นความสำคัญในการประสบความสำเร็จในการใช้เทคโนโลยีนี้ในงานแต่ละประเภท.

2. Computer vision

Capabilities within AI to interpret the world visually through cameras, video, and images.

Computer vision Concept

Computer vision คอมพิวเตอร์วิชัน (Computer Vision) เป็นสาขาหนึ่งของปัญญาประดิษฐ์ที่เน้นการให้คอมพิวเตอร์รู้จักและเข้าใจภาพและวิดีโอแบบอัตโนมัติ โดยใช้การประมวลผลข้อมูลทางภาพและวิดีโอ โดยมีวัตถุประสงค์ที่จะให้คอมพิวเตอร์มีความสามารถในการเห็นและเข้าใจโลกต่าง ๆ เหมือนมนุษย์. การทำคอมพิวเตอร์วิชันมีประโยชน์ในหลายงานและสถานการณ์ เช่น

  • ระบบรู้จักใบหน้า (Facial Recognition): ใช้ในการรู้จักและจดจำใบหน้าของบุคคล เช่นในการปลดล็อกสมาร์ทโฟนหรือการควบคุมการเข้าถึงอาคาร.
  • การตรวจสอบคุณภาพผลิตภัณฑ์ (Quality Inspection): ใช้ในอุตสาหกรรมผลิตเพื่อตรวจสอบความเสมอของผลิตภัณฑ์และความผิดพลาด.
  • รถยนต์แบบขับเอง (Autonomous Vehicles): ช่วยให้รถยนต์แบบขับเองสามารถรู้จักและตรวจจับสิ่งของรอบตัว เช่นการจดจำสัญลักษณ์จราจรและรถยนต์อื่น ๆ บนถนน.
  • การวิเคราะห์ภาพการแพทย์ (Medical Image Analysis): ช่วยในการวิเคราะห์รูปภาพการสแกน CT, MRI, และรังสีอื่น ๆ เพื่อวินิจฉัยโรคและปัญหาทางการแพทย์.
  • การจดจำและวิเคราะห์วัตถุ (Object Recognition and Analysis): ใช้ในการตรวจจับวัตถุที่เป็นรูปร่างและข้อมูลที่มีอยู่ในภาพหรือวิดีโอ เช่นการจดจำสินค้าในร้านค้าออนไลน์.

การทำคอมพิวเตอร์วิชันเกี่ยวข้องกับการใช้เทคโนโลยีการเรียนรู้ของเครื่อง (Machine Learning) เพื่อสร้างโมเดลที่สามารถรู้จักและวิเคราะห์ข้อมูลทางภาพและวิดีโอได้ และมักใช้งานร่วมกับเทคโนโลยีการประมวลผลภาพ (Image Processing) เพื่อดำเนินการกับข้อมูลทางภาพต่าง ๆ ให้เหมาะสมกับงานและการแยกแยะวัตถุต่าง ๆ ในภาพหรือวิดีโอ.

3. Natural Language Processing(NLP)

Capabilities within AI for a computer to interpret written or spoken language, and respond in kind.

NLP Concept

Natural Language Processing(NLP) คือสาขาหนึ่งของปัญญาประดิษฐ์ที่เน้นการประมวลผลและเข้าใจภาษาธรรมชาติโดยอัตโนมัติโดยใช้คอมพิวเตอร์และเทคโนโลยี การทำ NLP มุ่งเน้นให้คอมพิวเตอร์สามารถอ่านและเข้าใจข้อความและภาษาพูดแบบมนุษย์ รวมถึงสามารถตอบสนองตามความหมายของข้อมูลทางภาษาธรรมชาติด้วยวิธีการทางคณิตศาสตร์และการเรียนรู้ของเครื่อง. NLP มีประโยชน์ในหลายด้านของการประยุกต์ใช้ เช่น

  • การแปลภาษา (Language Translation): การแปลข้อความหรือภาษาจากภาษาหนึ่งไปยังอีกภาษาหนึ่ง เช่นการแปลจากภาษาอังกฤษเป็นภาษาสเปน.
  • การวิเคราะห์สื่อสังคม (Social Media Analysis): ใช้ในการวิเคราะห์และเข้าใจความรู้สึกและทัศนคติของบุคคลหรือสังคมจากข้อมูลที่โพสต์บนสื่อสังคมออนไลน์.
  • การจดจำเสียง (Speech Recognition): การรับรู้และแปลงเสียงพูดให้อยู่ในรูปของข้อความ เช่นระบบควบคุมเสียงในอุปกรณ์สมาร์ท.
  • การตอบสนองของระบบอัตโนมัติ (Chatbots): การสร้างโปรแกรมคอมพิวเตอร์ที่สามารถสนทนาและตอบคำถามของผู้ใช้อย่างเป็นธรรมชาติ.
  • การค้นหาข้อมูล (Information Retrieval): การช่วยในการค้นหาข้อมูลที่เกี่ยวข้องจากฐานข้อมูลขนาดใหญ่โดยใช้คำค้นหาหรือคำถาม.

NLP มีความซับซ้อนมากเนื่องจากภาษามนุษย์มีความหลากหลายและความเชิงบรรยายที่ซับซ้อน และความหมายของคำและประโยคมักมีบทบาทที่ขึ้นอยู่กับบริบท ทำให้การใช้เทคโนโลยี NLP ค่อนข้างท้าทาย แต่มันเป็นสาขาที่มีการพัฒนาและใช้งานอย่างกว้างขวางในหลายด้านของชีวิตประจำวันและธุรกิจ.

4. Document intelligence

Capabilities within AI that deal with managing, processing, and using high volumes of data found in forms and documents.

Document intelligence Concept

Document intelligence (ความรู้เกี่ยวกับเอกสาร)เป็นสาขาใหม่ในด้านการปัญญาประดิษฐ์และเทคโนโลยีสารสนเทศที่เน้นการใช้เทคโนโลยีเพื่อการประมวลผลเอกสารและข้อมูลที่อยู่ในรูปแบบของเอกสารอิเล็กทรอนิกส์ โดยเฉพาะเอกสารที่มีลักษณะที่ซับซ้อน เช่นเอกสารทางธุรกิจ, แบบฟอร์ม, เอกสารทางการแพทย์, และเอกสารทางกฎหมาย เพื่อให้คอมพิวเตอร์สามารถเข้าใจเนื้อหาและแปลงเป็นข้อมูลที่มีความหมายได้. Document intelligence รวมถึงการใช้เทคโนโลยีการเรียนรู้ของเครื่อง (Machine Learning) เพื่อทำการแยกแยะและสกัดข้อมูลจากเอกสาร ตัวอย่างการประยุกต์ใช้ document intelligence ได้แก่:

  • Optical Character Recognition (OCR): การแปลงข้อความที่ถูกพิมพ์หรือลายมือเป็นข้อมูลที่คอมพิวเตอร์สามารถเข้าใจได้ โดยใช้การสแกนหรือถ่ายภาพเอกสาร.
  • การจดจำและการแยกแยะเอกสาร (Document Classification): การแยกประเภทเอกสารต่าง ๆ เช่นใบสมัครงาน, ใบแจ้งหนี้, หรือสัญญา.
  • การสกัดข้อมูล (Data Extraction): การสกัดข้อมูลที่สำคัญออกจากเอกสาร เช่นชื่อลูกค้า, ที่อยู่, วันที่, หมายเลขบัญชี, หรือข้อมูลอื่น ๆ ที่เกี่ยวข้อง.
  • การค้นหาข้อมูล (Information Retrieval): การค้นหาข้อมูลที่ต้องการจากเอกสารในฐานข้อมูลขนาดใหญ่.
  • การวิเคราะห์ข้อมูล (Data Analysis): การนำข้อมูลที่ถูกสกัดออกมาจากเอกสารมาวิเคราะห์เพื่อให้สามารถทำการตัดสินใจหรือการวางแผนในธุรกิจได้.

Document intelligence ช่วยลดการกระทำของมนุษย์ในการประมวลผลเอกสารและเพิ่มความแม่นยำในการจัดการข้อมูล ซึ่งมีประโยชน์ในหลายอุตสาหกรรม เช่น การเงิน, การขาย, การบริหารจัดการ, และการดูแลสุขภาพ.

5. Knowledge mining

Capabilities within AI to extract information from large volumes of often unstructured data to create a searchable knowledge store

Knowledge mining Concept

Knowledge mining (การขุดความรู้) เป็นกระบวนการในการค้นหา, สกัด, และนำเอาข้อมูลและความรู้ที่ซ่อนอยู่ในข้อมูลที่มีอยู่ในรูปแบบที่ไม่โครงสร้างมาใช้ประโยชน์ โดยใช้เทคโนโลยีและเครื่องมือการประมวลผลข้อมูลต่าง ๆ รวมถึงการใช้ปัญญาประดิษฐ์ เพื่ออ่าน, วิเคราะห์, และเข้าใจข้อมูลที่มีโครงสร้างที่ไม่เป็นมาตรฐานหรือมีความซับซ้อน.

กระบวนการ Knowledge mining มักเกี่ยวข้องกับข้อมูลที่อยู่ในรูปแบบของข้อความ, เอกสาร, บันทึกการประชุม, หรือข้อมูลที่ไม่มีโครงสร้างแน่นอน เช่นข้อมูลทางเศรษฐศาสตร์, ข้อมูลการสนทนา, หรือข้อมูลทางการแพทย์. กระบวนการนี้มักใช้เทคโนโลยีการประมวลผลภาษาธรรมชาติ (Natural Language Processing, NLP), การเรียนรู้ของเครื่อง (Machine Learning), และเครื่องมือที่ช่วยในการสกัดข้อมูลที่มีความหมายและความรู้ออกมาจากข้อมูลที่ไม่มีโครงสร้างเหล่านี้.

เช่นหากคุณมีฐานข้อมูลเอกสารที่มีข้อความเกี่ยวกับความรู้ทางการแพทย์ การใช้ Knowledge mining สามารถช่วยในการค้นพบความรู้ทางการแพทย์ที่ซ่อนอยู่ในข้อมูลเหล่านี้ เช่นการค้นหาข้อมูลที่เกี่ยวกับโรคร้ายแรงหรือการค้นหาข้อมูลที่เกี่ยวกับการวิจัยทางการแพทย์ใหม่ ๆ ที่อาจมีประโยชน์ในการรักษาโรคหรือป้องกันโรคในอนาคต.

ดังนั้น Knowledge mining มีความสำคัญในการแปรรู้และนำความรู้ที่มีอยู่ในข้อมูลให้เป็นประโยชน์ในงานวิจัย, ธุรกิจ, และอุตสาหกรรมต่าง ๆ โดยช่วยให้เราทราบเกี่ยวกับความรู้ที่อาจมีค่าและไม่เคยรู้มาก่อน.

6. Generative AI

Capabilities within AI that create original content in a variety of formats including natural language, image, code, and more.

Generative AI Concept

Generative AI Generative AI (Artificial Intelligence สร้างสรรค์) คือแบบจำลองของปัญญาประดิษฐ์ที่ถูกออกแบบเพื่อสร้างข้อมูลหรือเนื้อหาใหม่ๆ ที่ดูเหมือนมนุษย์สร้างขึ้น โดยไม่จำเป็นต้องมีข้อมูลต้นฉบับที่เป็นตัวอย่าง หรือมีการคัดลอกโครงสร้างจากข้อมูลที่มีอยู่ แต่เครื่องมือ Generative AI สามารถสร้างสิ่งต่าง ๆ ออกมาด้วยตัวเอง ซึ่งประกอบด้วยหลายๆ แนวทางและเทคโนโลยีต่าง ๆ อย่างไรก็ตาม เหตุการณ์ที่มีชื่อเสียงมากของ Generative AI คือการใช้การเรียนรู้ของเครื่อง (Machine Learning) แบบเรียนรู้เชิงลึก (Deep Learning) และโมเดลการเรียนรู้เชิงเส้น (Linear Learning) เพื่อสร้างข้อมูลเสมือนมนุษย์เช่น ข้อความ, ภาพ, เสียง, และวิดีโอ. Generative AI สามารถประยุกต์ใช้ในหลายด้านและสาขา เช่น:

  • Natural Language Generation (NLG): สร้างข้อความที่มีความหมายและอ่านได้เพื่อใช้ในการสร้างเนื้อหาบนเว็บไซต์, บทความข่าว, และรายงาน.
  • Image Generation: สร้างภาพที่มีความคล้ายคลึงกับภาพจริง ๆ เช่นสร้างภาพของมนุษย์,สัตว์,หรือภาพสร้างสรรค์อื่น ๆ.
  • Music Composition: สร้างเสียงเพลงหรือเนื้อร้องเพลงใหม่ ๆ ที่มีความสมจริงในการดนตรี.
  • Art Generation: สร้างผลงานศิลปะและภาพวาดที่สร้างสรรค์จากคอมพิวเตอร์.
  • Video Synthesis: สร้างวิดีโอและอนิเมชันใหม่ ๆ ที่มีความหมายและความคล้ายคลึงกับวิดีโอจริง.

Generative AI มีศักยภาพในการสร้างเนื้อหาและสร้างสรรค์สิ่งต่าง ๆ โดยอัตโนมัติ แต่ก็มีความท้าทายในด้านความแม่นยำและความคุณภาพ และมีความคำนึงถึงปัญหาทางจริยธรรมและความปลอดภัยเมื่อมีการใช้งานในประเด็นต่าง ๆ ที่มีผลต่อสังคมและวัฒนธรรม.

อ้างอิงจาก:

Sentry image

Hands-on debugging session: instrument, monitor, and fix

Join Lazar for a hands-on session where you’ll build it, break it, debug it, and fix it. You’ll set up Sentry, track errors, use Session Replay and Tracing, and leverage some good ol’ AI to find and fix issues fast.

RSVP here →

Top comments (0)

Eliminate Context Switching and Maximize Productivity

Pieces.app

Pieces Copilot is your personalized workflow assistant, working alongside your favorite apps. Ask questions about entire repositories, generate contextualized code, save and reuse useful snippets, and streamline your development process.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay