This article was published on Wednesday, November 21, 2018 by Eytan Manor @ The Guild Blog
Looking at the Implementation and Getting to Know It inside Out
We've all heard about it. The new hook system of React 16.7 has made a lot of noise in the
community. We've all tried it and tested it, and got really excited about it and its potential. When
you think about hooks they're kind of magical, somehow React manages your component without even
exposing its instance (no use of this
keyword). So how the heck does React does that?
Today I would like to dive into React's implementation of hooks, so we can understand it better. The
problem with magical features is that it's harder to debug a problem once it happens, because it's
backed by a complex stack trace. Thus, by having deep knowledge regards React's new hook system, we
would be able to solve issues fairly quick once we encounter them, or even avoid them in the first
place.
Before I begin I would just like to say that I'm not a developer/maintainer of React and that my
words should be taken with a grain of salt. I did dive very deeply into the implementation of
React's hooks system, but by all means I can't guarantee that this is how React actually works.
With that said, I've backed my words with proofs and references from React's source code, and
tried to make my arguments as solid as possible.
![](/medium/bca747b6dd5992e26b78942e8ba4f071.png 'A rough schematic representation of React's hooks
system')
First, let's go through the mechanism that ensures that hooks are called within React's scope,
because you'd probably know by now that hooks are meaningless if not called in the right context:
The Dispatcher
The dispatcher is the shared object that contains the hook functions. It will be dynamically
allocated or cleaned up based on the rendering phase of ReactDOM, and it will ensure that the user
doesn't access hooks outside a React component (see
implementation).
The hooks are enabled/disabled by a flag called enableHooks
right before we render the root
component by simply switching to the right dispatcher; this means that technically we can
enable/disable hooks at runtime. React 16.6.X also has the experimental feature implemented, but
it's actually disabled (see
implementation).
When we're done performing the rendering work, we nullify the dispatcher and thus preventing hooks
from being accidentally used outside ReactDOM's rendering cycle. This is a mechanism that will
ensure that the user doesn't do silly things (see
implementation).
The dispatcher is resolved in each and every hook call using a function called
resolveDispatcher()
. Like I said earlier, outside the rendering cycle of React this should be
meaningless, and React should print the warning message: “Hooks can only be called inside the body
of a function component” (see
implementation).
let currentDispatcher
const dispatcherWithoutHooks = {
/* ... */
}
const dispatcherWithHooks = {
/* ... */
}
function resolveDispatcher() {
if (currentDispatcher) return currentDispatcher
throw Error("Hooks can't be called")
}
function useXXX(...args) {
const dispatcher = resolveDispatcher()
return dispatcher.useXXX(...args)
}
function renderRoot() {
currentDispatcher = enableHooks ? dispatcherWithHooks : dispatcherWithoutHooks
performWork()
currentDispatcher = null
}
Now that we got that simple encapsulation mechanism covered, I would like us to move to the core of
this article — the hooks. Right of the bet I'd like to introduce you to a new concept:
The Hooks Queue
Behind the scenes, hooks are represented as nodes which are linked together in their calling order.
They're represented like so because hooks are not simply created and then left alone. They have a
mechanism which allows them to be what they are. A hook has several properties which I would like
you to bare in mind before diving into its implementation:
- Its initial state is created in the initial render.
- Its state can be updated on the fly.
- React would remember the hook's state in future renders.
- React would provide you with the right state based on the calling order.
- React would know which fiber does this hook belong to.
Accordingly, we need to rethink the way we view the component's state. So far we have thought about
it as if it's a plain object:
{
"foo": "foo",
"bar": "bar",
"baz": "baz"
}
But when dealing with hooks it should be viewed as a queue, where each node represents a single
model of the state:
{
"memoizedState": "foo",
"next": {
"memoizedState": "bar",
"next": {
"memoizedState": "bar",
"next": null
}
}
}
The schema of a single hook node can be viewed in the
implementation.
You'll see that the hook has some additional properties, but the key for understanding how hooks
work lies within memoizedState
and next
. The rest of the properties are used specifically by the
useReducer()
hook to cache dispatched actions and base states so the reduction process can be
repeated as a fallback in various cases:
-
baseState
- The state object that would be given to the reducer. -
baseUpdate
- The most recent dispatched action that created thebaseState
. -
queue
- A queue of dispatched actions, waiting to go through the reducer.
Unfortunately I haven't managed to get a good grasp around the reducer hook because I didn't manage
to reproduce almost any of its edge cases, so I wouldn't feel comfortable to elaborate. I will only
say that the reducer implementation is so inconsistent that even one of the comments in the
implementation
itself states that “(it's) not sure if these are the desired semantics”; so how am I supposed to be
sure?!
So back to hooks, before each and every function Component invocation, a function named
prepareHooks()
is going to be called, where the current fiber and its first hook node in the hooks queue are going
to be stored in global variables. This way, any time we call a hook function (useXXX()
) it would
know in which context to run.
let currentlyRenderingFiber
let workInProgressQueue
let currentHook
// Source: https://github.com/facebook/react/tree/5f06576f51ece88d846d01abd2ddd575827c6127/react-reconciler/src/ReactFiberHooks.js:123
function prepareHooks(recentFiber) {
currentlyRenderingFiber = workInProgressFiber
currentHook = recentFiber.memoizedState
}
// Source: https://github.com/facebook/react/tree/5f06576f51ece88d846d01abd2ddd575827c6127/react-reconciler/src/ReactFiberHooks.js:148
function finishHooks() {
currentlyRenderingFiber.memoizedState = workInProgressHook
currentlyRenderingFiber = null
workInProgressHook = null
currentHook = null
}
// Source: https://github.com/facebook/react/tree/5f06576f51ece88d846d01abd2ddd575827c6127/react-reconciler/src/ReactFiberHooks.js:115
function resolveCurrentlyRenderingFiber() {
if (currentlyRenderingFiber) return currentlyRenderingFiber
throw Error("Hooks can't be called")
}
// Source: https://github.com/facebook/react/tree/5f06576f51ece88d846d01abd2ddd575827c6127/react-reconciler/src/ReactFiberHooks.js:267
function createWorkInProgressHook() {
workInProgressHook = currentHook ? cloneHook(currentHook) : createNewHook()
currentHook = currentHook.next
workInProgressHook
}
function useXXX() {
const fiber = resolveCurrentlyRenderingFiber()
const hook = createWorkInProgressHook()
// ...
}
function updateFunctionComponent(recentFiber, workInProgressFiber, Component, props) {
prepareHooks(recentFiber, workInProgressFiber)
Component(props)
finishHooks()
}
Once an update has finished, a function named
finishHooks()
will be called, where a reference for the first node in the hooks queue will be stored on the
rendered fiber in the memoizedState
property. This means that the hooks queue and their state can
be addressed externally:
const ChildComponent = () => {
useState('foo')
useState('bar')
useState('baz')
return null
}
const ParentComponent = () => {
const childFiberRef = useRef()
useEffect(() => {
let hookNode = childFiberRef.current.memoizedState
assert(hookNode.memoizedState, 'foo')
hookNode = hooksNode.next
assert(hookNode.memoizedState, 'bar')
hookNode = hooksNode.next
assert(hookNode.memoizedState, 'baz')
})
return <ChildComponent ref={childFiberRef} />
}
Let's get more specific and talk about individual hooks, starting with the most common of all — the
state hook:
State Hooks
You would be surprised to know, but behind the scenes the useState
hook uses useReducer
and it
simply provides it with a pre-defined reducer handler (see
implementation).
This means that the results returned by useState
are actually a reducer state, and an action
dispatcher. I would like you to take a look at the reducer handler that the state hook uses:
function basicStateReducer(state, action) {
return typeof action === 'function' ? action(state) : action
}
So as expected, we can provide the action dispatcher with the new state directly; but would you look
at that?! We can also provide the dispatcher with an action function that will receive the old
state and return the new one. This isn't documented anywhere in the This means
official React documentation (as
for the time this article was written) and that's a pity because it's extremely useful!
that when you send the state setter down the component tree you can run mutations against the
current state of the parent component, without passing it as a different prop. For example:
const ParentComponent = () => {
const [name, setName] = useState()
return <ChildComponent toUpperCase={setName} />
}
const ChildComponent = props => {
useEffect(() => {
props.toUpperCase(state => state.toUpperCase())
}, [true])
return null
}
Lastly, effect hooks — which made a major impact on a component's life cycle and how it works:
Effect Hooks
Effect hooks behave slightly differently and has an additional layer of logic that I would like to
explain. Again, there are things I would like you to bear in mind regards the properties of the
effect hooks before I dive into the implementation:
- They're created during render time, but they run after painting.
- If given so, they'll be destroyed right before the next painting.
- They're called in their definition order.
Note that I'm using the "painting" term and not "rendering". These two are different things, and
I've seen many speakers in the recent React Conf use the wrong term!
Even in the official React docs they
say “after the render is committed to the screen”, which is kind of like "painting". The render
method just creates the fiber node but doesn't paint anything yet.
Accordingly, there should be another an additional queue that should hold these effects and should
be addressed after painting. Generally speaking, a fiber holds a queue which contains effect nodes.
Each effect is of a different type and should be addressed at its appropriate phase:
- Invoke instances of
getSnapshotBeforeUpdate()
before mutation (see implementation). - Perform all the host insertions, updates, deletions and ref unmounts (see implementation).
- Perform all life-cycles and ref callbacks. Life-cycles happen as a separate pass so that all placements, updates, and deletions in the entire tree have already been invoked. This pass also triggers any renderer-specific initial effects (see implementation).
- Effects which were scheduled by the
useEffect()
hook - which are also known as “passive effects” based on the implementation (maybe we should start using this term within the React community?!).
When it comes to the hook effects, they should be stored on the fiber in a property called
updateQueue
, and each effect node should have the following schema (see
implementation):
-
tag
- A binary number which will dictate the behavior of the effect (I will elaborate soon). -
create
- The callback that should be ran after painting. -
destroy
- The callback returned fromcreate()
that should be ran before the initial render. -
inputs
- A set of values that will determine whether the effect should be destroyed and recreated. -
next
- A reference to the next effect which was defined in the function Component.
Besides the tag
property, the other properties are pretty straight forward and easy to understand.
If you've studied hooks well, you'd know that React provides you with a couple of special effect
hooks: useMutationEffect()
and useLayoutEffect()
. These two effects internally use
useEffect()
, which essentially mean that they create an effect node, but they do so using a
different tag value.
The tag is composed out of a combination of binary values (see
implementation):
const NoEffect = /* */ 0b00000000
const UnmountSnapshot = /* */ 0b00000010
const UnmountMutation = /* */ 0b00000100
const MountMutation = /* */ 0b00001000
const UnmountLayout = /* */ 0b00010000
const MountLayout = /* */ 0b00100000
const MountPassive = /* */ 0b01000000
const UnmountPassive = /* */ 0b10000000
The most common use cases for these binary values would be using a pipeline (|
) and add the bits
as is to a single value. Then we can check whether a tag implements a certain behavior or not using
an ampersand (&
). If the result is non-zero, it means that the tag implements the specified
behavior.
const effectTag = MountPassive | UnmountPassive
assert(effectTag, 0b11000000)
assert(effectTag & MountPassive, 0b10000000)
Here are the supported hook effect types by React along with their tags (see
implementation):
- Default effect —
UnmountPassive | MountPassive
. - Mutation effect —
UnmountSnapshot | MountMutation
. - Layout effect —
UnmountMutation | MountLayout
.
And here's how React checks for behavior implementation (see
implementation):
if ((effect.tag & unmountTag) !== NoHookEffect) {
// Unmount
}
if ((effect.tag & mountTag) !== NoHookEffect) {
// Mount
}
So, based on what we've just learned regards effect hooks, we can actually inject an effect to a
certain fiber externally:
function injectEffect(fiber) {
const lastEffect = fiber.updateQueue.lastEffect
const destroyEffect = () => {
console.log('on destroy')
}
const createEffect = () => {
console.log('on create')
return destroy
}
const injectedEffect = {
tag: 0b11000000,
next: lastEffect.next,
create: createEffect,
destroy: destroyEffect,
inputs: [createEffect]
}
lastEffect.next = injectedEffect
}
const ParentComponent = <ChildComponent ref={injectEffect} />
So that was it! What was your biggest takeout from this article? How are you going to use this new
knowledge in your React apps? Would love to see interesting comments!
Top comments (0)