DEV Community

0 seconds of 35 minutes, 13 secondsVolume 90%
Press shift question mark to access a list of keyboard shortcuts
00:00
00:00
35:13
 
Jimmy Guerrero for Voxel51

Posted on

ECCV 2024: Zero-shot Video Anomaly Detection: Leveraging Large Language Models for Rule-Based Reasoning

Video Anomaly Detection (VAD) is critical for applications such as surveillance and autonomous driving. However, existing methods lack transparent reasoning, limiting public trust in real-world deployments. We introduce a rule-based reasoning framework that leverages Large Language Models (LLMs) to induce detection rules from few-shot normal samples and apply them to identify anomalies, incorporating strategies such as rule aggregation and perception smoothing to enhance robustness. The abstract nature of language enables rapid adaptation to diverse VAD scenarios, ensuring flexibility and broad applicability.

ECCV 2024 Paper: Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models

About the Speaker

Yuchen Yang is a a Ph.D. Candidate in the Department of Computer Science at Johns Hopkins University. Her research aims to deliver functional, trustworthy solutions for machine learning and AI systems.

Reinvent your career. Join DEV.

It takes one minute and is worth it for your career.

Get started

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs