DEV Community

Yeahia Sarker
Yeahia Sarker

Posted on

GraphBit’s Agentic AI Mechanisms Compared to Other Agent Frameworks

GraphBit (Rust core + workflow graph + lock‑free concurrency)

  • Execution engine
    • Compiled Rust core schedules a WorkflowGraph with dependency awareness, spawning ready nodes concurrently
    • Per‑node‑type concurrency with atomics (no global semaphore); fast‑path skips permits for simple nodes
    • Python/Node bindings delegate to the Rust executor (low overhead orchestration)
  • What this means
    • Lower orchestration overhead, predictable scheduling, high throughput under load
  • GraphBit scheduling of dependency‑ready nodes

// Select nodes whose dependencies are all completed

let mut ready_ids: Vec<NodeId> = Vec::new();

for nid in remaining.iter() {

let deps = graph_clone.get_dependencies(nid);

if deps.iter().all(|d| completed.contains(d)) {

   `ready_ids.push(nid.clone());`
Enter fullscreen mode Exit fullscreen mode

}

}

  • Spawning tasks with selective permit acquisition (fast path)

// Lightweight spawn; skip permits for non-agent nodes

let _permits = if matches!(node.node_type, NodeType::Agent { .. }) {

Some(concurrency_manager.acquire_permits(&task_info).await?)

} else { None };

  • Lock‑free per‑node concurrency (no global semaphore)

struct NodeTypeConcurrency {

max_concurrent: usize,

current_count: Arc<std::sync::atomic::AtomicUsize>,

wait_queue: Arc<tokio::sync::Notify>,

}

  • Python binding calls into core executor (no Python orchestration loop)

let executor = match config.mode {

ExecutionMode::HighThroughput => CoreWorkflowExecutor::new_high_throughput()

   `.with_default_llm_config(llm_config),`
Enter fullscreen mode Exit fullscreen mode

ExecutionMode::LowLatency => CoreWorkflowExecutor::new_low_latency()

   `.with_default_llm_config(llm_config)`

   `.without_retries()`

   `.with_fail_fast(true),`
Enter fullscreen mode Exit fullscreen mode

// ...

};

Other frameworks (Python‑centric orchestration models)

  • LangChain
    • Model: Chains invoked from Python; parallelism via asyncio with semaphores around ainvoke
    • Implication: Python event loop controls orchestration; concurrency limited by interpreter scheduling and per‑call overhead

sem = asyncio.Semaphore(concurrency)

async def run_with_sem(t: str):

async with sem:

   `return await chain.ainvoke({"task": t})`
Enter fullscreen mode Exit fullscreen mode

results = await asyncio.gather(*[run_with_sem(task) for task in PARALLEL_TASKS])

  • LangGraph
    • Model: Declarative state graph; async graph.ainvoke drives node execution via Python
    • Implication: Python orchestrates graph transitions and concurrency

graph = self.graphs["simple"]

initial_state = {"messages": [], "task": SIMPLE_TASK_PROMPT, "result": None}

result = await graph.ainvoke(initial_state)

  • PydanticAI
    • Model: Agent.run executes sequential/async steps within Python
    • Implication: Concurrency and orchestration occur in Python agents

agent: Agent = self.agents["simple"]

result = await agent.run(SIMPLE_TASK_PROMPT)

  • LlamaIndex
    • Model: Direct LLM calls (acomplete) with parallelism via asyncio semaphores
    • Implication: Python controls batching and concurrency

sem = asyncio.Semaphore(concurrency)

async def run_with_sem(text: str):

async with sem:

   `return await llm.acomplete(text)`
Enter fullscreen mode Exit fullscreen mode

results = await asyncio.gather(*[run_with_sem(t) for t in CONCURRENT_TASK_PROMPTS])

  • CrewAI
    • Model: Define Agents and Tasks; kickoff runs crews; concurrency via asyncio + run_in_executor
    • Implication: Python concurrency governs; crew execution offloaded to thread pool where needed

task = Task(description=task_desc, agent=agent, expected_output="...")

crew = Crew(agents=[agent], tasks=[task], verbose=False)

return await asyncio.get_event_loop().run_in_executor(None, crew.kickoff)

Key technical differences at a glance

  • Orchestration layer
    • GraphBit: Rust executor drives the workflow graph; Python/Node just configure/dispatch
    • Others: Python async/threads orchestrate chains/graphs/agents
  • Concurrency control
    • GraphBit: Per‑node‑type atomic counters, notify queues, selective permits (reduced contention)
    • Others: asyncio semaphores and gather patterns, often per‑pipeline, under Python runtime
  • Scheduling model
    • GraphBit: Dependency‑aware ready‑set scheduling and lock‑free permits in the core
    • Others: Framework‑specific graph/chain semantics, executed via Python event loop

Top comments (0)