DEV Community

Xiao Ling
Xiao Ling

Posted on • Originally published at dynamsoft.com

How to Integrate Context7 MCP into an AI IDE for Smarter Development

In the world of AI-assisted development, one of the most common frustrations is receiving code based on outdated documentation. AI models are typically trained on static datasets, meaning their knowledge can be months or even years behind. This often leads to suggestions that use deprecated functions, hallucinated APIs, or code that simply doesn’t work with the latest libraries.

Context7 is a powerful MCP (Model Context Protocol) server that solves this problem by feeding your AI assistant real-time, version-specific documentation directly within your development workflow. In this tutorial, you'll learn how to integrate Context7 into an AI IDE like Cursor or Trae, and use it to automatically build a Python barcode reader with the Dynamsoft Capture Vision SDK.

Feeding SDK Documentation to Context7

  1. Visit https://context7.com/ and add the required documentation repositories or websites:

    https://github.com/Dynamsoft/barcode-reader-python-samples
    https://www.dynamsoft.com/barcode-reader/docs/server/programming/python/
    https://github.com/dynamsoft-docs/barcode-reader-docs-server/tree/main
    
  2. Search for "Dynamsoft" to verify that the documentation has been indexed:

    context7 documentation

How to Install Context7 in TraeIDE

Integrating Context7 with TraeIDE is straightforward:

  1. Open the MCP marketplace in TraeIDE.
  2. Search for "Context7" and install the MCP package.

    trae mcp context7

Using Context7 and Gemini 2.5 Pro to Build a Python Barcode Reader Automatically

  1. Open the AI sidebar to access the chat box.
  2. Change the Agent from @builder to @builder with MCP.
  3. Select Gemini 2.5 Pro as the model.

    trae mcp builder

  4. Enter your prompt. For example:

    "Please use the latest Dynamsoft Capture Vision for Python to create a barcode reader app."

  5. Trae will now use Context7 to fetch the latest documentation, ensuring the AI generates accurate Python code. Example output:

    import sys
    from dynamsoft_capture_vision_bundle import *
    import os
    import cv2
    import numpy as np
    
    if __name__ == '__main__':
    
        print("**********************************************************")
        print("Welcome to Dynamsoft Capture Vision - Barcode Sample")
        print("**********************************************************")
    
        error_code, error_message = LicenseManager.init_license(
            "LICENSE-KEY") # Public trial license
        if error_code != EnumErrorCode.EC_OK and error_code != EnumErrorCode.EC_LICENSE_CACHE_USED:
            print("License initialization failed: ErrorCode:",
                  error_code, ", ErrorString:", error_message)
        else:
            cvr_instance = CaptureVisionRouter()
            while (True):
                image_path = input(
                    ">> Input your image full path (e.g. C:\\path\\to\\your\\image.png):\n"
                    ">> or 'Q'/'q' to quit\n"
                ).strip('\'\"')
    
                if image_path.lower() == "q":
                    sys.exit(0)
    
                if not os.path.exists(image_path):
                    print("The image path does not exist.")
                    continue
                result = cvr_instance.capture(
                    image_path, EnumPresetTemplate.PT_READ_BARCODES.value)
                if result.get_error_code() != EnumErrorCode.EC_OK:
                    print("Error:", result.get_error_code(),
                          result.get_error_string())
                else:
                    cv_image = cv2.imread(image_path)
    
                    items = result.get_items()
                    if items is not None:
                        print('Found {} barcodes.'.format(len(items)))
                        for item in items:
                            format_type = item.get_format()
                            text = item.get_text()
                            print(f'Format: {format_type}, Text: {text}')
                            location = item.get_location()
                            if location is not None and location.points is not None:
                                points = location.points
                                pts = np.array([(p.x, p.y) for p in points], np.int32)
                                cv2.polylines(cv_image, [pts], True, (0, 255, 0), 2)
                        cv2.imshow("Barcode Reader", cv_image)
                        cv2.waitKey(0)
                    else:
                        print("No barcodes found.")
    

Top comments (0)