Given the root of a Binary Search Tree and a target number k, return true if there exist two elements in the BST such that their sum is equal to the given target.
Example 1:
Input: root = [5,3,6,2,4,null,7], k = 9
Output: true
Example 2:
Input: root = [5,3,6,2,4,null,7], k = 28
Output: false
Approach 1 : Descriptive & easy to understand
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} k
* @return {boolean}
*/
var findTarget = function (root, k) {
// collecting all Element form BST
let allElements = [];
// inorder traversal becoz it will give sorted array for simplicity
function inOrderTraversal(root) {
if (root === null) {
return null;
}
inOrderTraversal(root.left);
allElements.push(root.val);
inOrderTraversal(root.right);
}
inOrderTraversal(root);
// creating map to keep track of all elements
let map = new Map();
allElements.forEach((element, index) => {
map.set(element, index);
});
// main loop to check if two values from array can give up the required sum
for (let i = 0; i < allElements.length; i++) {
let num = allElements[i];
let diff = k - num;
// checking if diff exist in map & also we have to make sure
// index of current element is not same as of matching element
if (map.has(diff) && map.get(diff) !== i) {
return true;
}
}
return false;
};
Approach 2 : Modified the above solution to do it in O(N)
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} k
* @return {boolean}
*/
var findTarget = function(root, k) {
let map= new Map();
let bool=false;
const inorder =(root)=>{
if(root===null) return;
inorder(root.left);
if(map.has(k-root.val)){
bool=true;
}else{
map.set(root.val);
}
inorder(root.right);
}
inorder(root);
return bool;
};
Top comments (1)
Understood.. let me re-work & try..