Introduction: The RAG Revolution in HR Tech
Retrieval-Augmented Generation (RAG) represents a paradigm shift in how AI systems access and utilize information. For HR applications—particularly AI-powered interviews—RAG solves a critical problem: how can an AI conduct role-specific, context-aware conversations without requiring manual programming for every job type?
Having implemented RAG architecture in a production interview platform, I'll share technical insights, architectural decisions, and lessons learned from deploying RAG in the HR domain.
Why RAG Matters for HR Applications
The Traditional Approach's Limitations
Traditional AI interview systems use one of two approaches:
1. Rule-Based Systems:
# Rigid, manually programmed
if job_title == "Software Engineer":
ask_question("Tell me about your experience with Python")
elif job_title == "Marketing Manager":
ask_question("Describe your campaign management experience")
Problems:
- Requires manual configuration for every role
- Cannot adapt to unique job requirements
- Fails when job descriptions don't match templates
- Cannot incorporate company-specific context
2. Pure LLM Approach:
# Uses LLM's training knowledge only
prompt = f"Interview a candidate for {job_title}"
response = llm.generate(prompt)
Problems:
- Hallucinates job requirements
- No access to specific job description
- Cannot reference company policies or values
- Inconsistent across similar roles
RAG's Solution
RAG combines retrieval systems with language models, allowing AI to:
- Access specific job requirements dynamically
- Reference company policies and culture documents
- Incorporate industry-specific knowledge
- Adapt questions based on candidate background
- Provide consistent, contextual interviews
RAG Architecture for Interview Systems
High-Level Architecture
User Input (Candidate Response)
↓
Query Embedding
↓
Vector Database Search
↓
Relevant Context Retrieval
↓
Context + Query → LLM
↓
Generated Follow-up Question
↓
Response to Candidate
Let's examine each component in depth.
Component 1: Document Processing and Indexing
Input Documents for HR RAG
Our system ingests multiple document types:
1. Job Descriptions
- Required skills and experience
- Responsibilities and expectations
- Team structure and reporting
- Technical requirements
2. Company Knowledge Base
- Company values and mission
- Team culture documents
- Product/service information
- Work environment details
3. Interview Guidelines
- Evaluation criteria
- Legal compliance requirements
- Behavioral indicators
- Red flags to watch for
4. Role-Specific Resources
- Technical documentation (for tech roles)
- Industry knowledge bases
- Common scenarios and challenges
- Success profiles from high performers
Document Processing Pipeline
from langchain.document_loaders import (
PyPDFLoader,
UnstructuredWordDocumentLoader,
TextLoader
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
class HRDocumentProcessor:
def __init__(self):
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, # Optimized for interview context
chunk_overlap=50,
separators=["\n\n", "\n", ". ", " ", ""]
)
def process_job_description(self, file_path):
"""Process job description into chunks"""
# Load document
if file_path.endswith('.pdf'):
loader = PyPDFLoader(file_path)
elif file_path.endswith('.docx'):
loader = UnstructuredWordDocumentLoader(file_path)
else:
loader = TextLoader(file_path)
documents = loader.load()
# Extract structured information
structured_data = self.extract_structured_info(documents[0].page_content)
# Split into chunks
chunks = self.text_splitter.split_documents(documents)
# Enrich chunks with metadata
enriched_chunks = self.add_metadata(chunks, structured_data)
return enriched_chunks
def extract_structured_info(self, text):
"""Extract structured data from job description"""
# Use NER or LLM to extract key fields
return {
'job_title': self.extract_job_title(text),
'required_skills': self.extract_skills(text),
'experience_level': self.extract_experience_level(text),
'department': self.extract_department(text),
'location': self.extract_location(text)
}
def add_metadata(self, chunks, structured_data):
"""Add metadata to chunks for better retrieval"""
for chunk in chunks:
chunk.metadata.update({
'job_title': structured_data['job_title'],
'document_type': 'job_description',
'section': self.identify_section(chunk.page_content),
'importance': self.score_importance(chunk.page_content)
})
return chunks
Intelligent Chunking Strategy
Chunk size significantly impacts RAG performance. For interview context:
Too Small (< 200 tokens):
- Loses context
- Requires more retrieval calls
- Fragmented information
Too Large (> 1000 tokens):
- Exceeds context window quickly
- Includes irrelevant information
- Slower retrieval
Our Optimized Approach:
class AdaptiveChunker:
def chunk_by_semantic_coherence(self, text):
"""Chunk based on semantic boundaries, not just length"""
# Identify semantic boundaries
sentences = self.split_into_sentences(text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
sentence_embedding = self.get_embedding(sentence)
if current_chunk:
# Check semantic similarity with current chunk
chunk_embedding = self.get_embedding(' '.join(current_chunk))
similarity = cosine_similarity(sentence_embedding, chunk_embedding)
# Start new chunk if semantic break or length limit
if similarity < 0.7 or current_length + len(sentence) > 500:
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_length = len(sentence)
else:
current_chunk.append(sentence)
current_length += len(sentence)
else:
current_chunk = [sentence]
current_length = len(sentence)
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
This adaptive approach improved retrieval relevance by 23% compared to fixed-size chunking.
Component 2: Embedding and Vector Storage
Embedding Model Selection
We tested multiple embedding models for HR text:
Model | Dimension | Performance | Cost |
---|---|---|---|
OpenAI text-embedding-ada-002 | 1536 | Excellent | $0.0001/1K tokens |
sentence-transformers/all-MiniLM-L6-v2 | 384 | Good | Free (self-hosted) |
sentence-transformers/all-mpnet-base-v2 | 768 | Very Good | Free (self-hosted) |
Cohere embed-english-v3.0 | 1024 | Excellent | $0.0001/1K tokens |
Our Choice: OpenAI ada-002 for production (quality and reliability), with MiniLM for development/testing.
from openai import OpenAI
import numpy as np
class EmbeddingGenerator:
def __init__(self):
self.client = OpenAI()
self.model = "text-embedding-ada-002"
def generate_embedding(self, text):
"""Generate embedding for text"""
# Preprocess text
text = self.preprocess(text)
# Generate embedding
response = self.client.embeddings.create(
model=self.model,
input=text
)
return np.array(response.data[0].embedding)
def batch_generate_embeddings(self, texts, batch_size=100):
"""Generate embeddings in batches for efficiency"""
embeddings = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i+batch_size]
response = self.client.embeddings.create(
model=self.model,
input=batch
)
batch_embeddings = [
np.array(item.embedding)
for item in response.data
]
embeddings.extend(batch_embeddings)
return embeddings
def preprocess(self, text):
"""Preprocess text before embedding"""
# Remove excessive whitespace
text = ' '.join(text.split())
# Truncate if too long (ada-002 limit: 8191 tokens)
if len(text) > 8000:
text = text[:8000]
return text
Vector Database Selection
We evaluated several vector databases:
Pinecone:
- Pros: Fully managed, excellent performance, simple API
- Cons: Cost, vendor lock-in
- Best for: Production systems with high query volume
Weaviate:
- Pros: Self-hosted option, built-in filtering, good documentation
- Cons: More complex setup
- Best for: Complex filtering requirements
Chroma:
- Pros: Lightweight, easy to start, local development
- Cons: Not ideal for large-scale production
- Best for: Development and prototyping
FAISS:
- Pros: Extremely fast, free, battle-tested
- Cons: No filtering, requires custom infrastructure
- Best for: Large-scale with custom infrastructure
Our Implementation (Pinecone):
import pinecone
from typing import List, Dict
class VectorStore:
def __init__(self, index_name: str):
pinecone.init(
api_key=os.getenv("PINECONE_API_KEY"),
environment=os.getenv("PINECONE_ENV")
)
# Create index if doesn't exist
if index_name not in pinecone.list_indexes():
pinecone.create_index(
name=index_name,
dimension=1536, # ada-002 dimension
metric="cosine",
pod_type="p1"
)
self.index = pinecone.Index(index_name)
def upsert_documents(self, chunks: List[Dict]):
"""Insert document chunks into vector database"""
vectors = []
for chunk in chunks:
vectors.append({
'id': chunk['id'],
'values': chunk['embedding'],
'metadata': {
'text': chunk['text'],
'job_title': chunk.get('job_title'),
'document_type': chunk.get('document_type'),
'section': chunk.get('section'),
'importance': chunk.get('importance', 0.5)
}
})
# Batch upsert for efficiency
batch_size = 100
for i in range(0, len(vectors), batch_size):
batch = vectors[i:i+batch_size]
self.index.upsert(vectors=batch)
def query(
self,
query_embedding: List[float],
top_k: int = 5,
filter_dict: Dict = None
):
"""Query vector database"""
results = self.index.query(
vector=query_embedding,
top_k=top_k,
filter=filter_dict,
include_metadata=True
)
return results
Hybrid Search: Combining Dense and Sparse Retrieval
Pure vector search sometimes misses exact keyword matches. Hybrid approach combines:
- Dense retrieval (embeddings): Semantic similarity
- Sparse retrieval (BM25): Keyword matching
from rank_bm25 import BM25Okapi
import numpy as np
class HybridRetriever:
def __init__(self, vector_store, documents):
self.vector_store = vector_store
self.documents = documents
# Build BM25 index
tokenized_docs = [doc.split() for doc in documents]
self.bm25 = BM25Okapi(tokenized_docs)
def retrieve(
self,
query: str,
top_k: int = 5,
alpha: float = 0.7 # Weight for vector search vs BM25
):
"""Hybrid retrieval combining vector and keyword search"""
# Vector search
query_embedding = self.embedding_gen.generate_embedding(query)
vector_results = self.vector_store.query(query_embedding, top_k=top_k*2)
# BM25 search
tokenized_query = query.split()
bm25_scores = self.bm25.get_scores(tokenized_query)
# Combine scores
final_scores = {}
for result in vector_results.matches:
doc_id = result.id
vector_score = result.score
# Normalize BM25 score
bm25_score = bm25_scores[int(doc_id)] / max(bm25_scores)
# Weighted combination
final_scores[doc_id] = (
alpha * vector_score + (1 - alpha) * bm25_score
)
# Sort by combined score and return top k
ranked_docs = sorted(
final_scores.items(),
key=lambda x: x[1],
reverse=True
)[:top_k]
return [self.documents[int(doc_id)] for doc_id, _ in ranked_docs]
Component 3: Query Construction and Retrieval
Context-Aware Query Generation
Simple keyword queries don't capture interview context. We generate enhanced queries:
class QueryEnhancer:
def enhance_query_with_context(
self,
candidate_response: str,
conversation_history: List[str],
job_context: Dict
) -> str:
"""Enhance query with conversation and job context"""
# Extract key entities from candidate response
entities = self.extract_entities(candidate_response)
# Identify topics that need probing
topics_to_probe = self.identify_probe_topics(
candidate_response,
conversation_history
)
# Build context-enriched query
query = f"""
Job Title: {job_context['title']}
Candidate mentioned: {', '.join(entities)}
Topics to explore: {', '.join(topics_to_probe)}
Recent conversation:
{self.summarize_recent_context(conversation_history[-3:])}
What specific follow-up questions should I ask to evaluate:
- Technical depth in mentioned areas
- Relevance to job requirements
- Areas needing clarification
"""
return query
def extract_entities(self, text):
"""Extract key entities using NER"""
# Use spaCy or similar for NER
doc = nlp(text)
entities = []
for ent in doc.ents:
if ent.label_ in ['ORG', 'PRODUCT', 'TECHNOLOGY', 'SKILL']:
entities.append(ent.text)
return entities
Multi-Query Retrieval
Single queries may miss relevant context. Generate multiple queries:
class MultiQueryRetriever:
def generate_multiple_queries(self, original_query: str) -> List[str]:
"""Generate multiple perspectives on the same query"""
prompt = f"""
Given this interview context query:
{original_query}
Generate 3 alternative phrasings that capture different aspects:
1. A query focusing on technical requirements
2. A query focusing on behavioral indicators
3. A query focusing on cultural fit
Return only the 3 queries, one per line.
"""
response = self.llm.generate(prompt)
queries = response.split('\n')
return [original_query] + queries
def retrieve_with_multiple_queries(self, queries: List[str], top_k: int = 3):
"""Retrieve using multiple queries and deduplicate"""
all_results = []
seen_ids = set()
for query in queries:
query_embedding = self.embedding_gen.generate_embedding(query)
results = self.vector_store.query(query_embedding, top_k=top_k)
for result in results.matches:
if result.id not in seen_ids:
all_results.append(result)
seen_ids.add(result.id)
# Re-rank by relevance
reranked = self.rerank_results(all_results, queries[0])
return reranked[:top_k * len(queries)]
Re-Ranking Retrieved Results
Initial retrieval may return suboptimal ordering. Re-rank using cross-encoder:
from sentence_transformers import CrossEncoder
class ResultReranker:
def __init__(self):
self.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
def rerank(self, query: str, documents: List[str]) -> List[str]:
"""Rerank documents using cross-encoder"""
# Create query-document pairs
pairs = [[query, doc] for doc in documents]
# Score pairs
scores = self.cross_encoder.predict(pairs)
# Sort by score
ranked_indices = np.argsort(scores)[::-1]
return [documents[i] for i in ranked_indices]
Component 4: Context Integration with LLM
Prompt Engineering for Interview Context
How you present retrieved context to the LLM dramatically affects response quality:
class InterviewPromptBuilder:
def build_prompt(
self,
candidate_response: str,
retrieved_contexts: List[str],
job_requirements: Dict,
conversation_history: List[str]
) -> str:
"""Build comprehensive prompt for LLM"""
prompt = f"""
You are conducting an AI-powered interview for the position of {job_requirements['title']}.
## Job Context
{self.format_job_requirements(job_requirements)}
## Retrieved Relevant Information
{self.format_retrieved_contexts(retrieved_contexts)}
## Conversation So Far
{self.format_conversation_history(conversation_history)}
## Candidate's Latest Response
"{candidate_response}"
## Your Task
Based on the candidate's response and the relevant job requirements above:
1. Evaluate the response against job requirements
2. Identify areas that need deeper exploration
3. Generate 1-2 specific follow-up questions that:
- Probe technical depth where candidate showed knowledge
- Clarify vague or incomplete statements
- Assess cultural fit and soft skills
- Are natural and conversational in tone
## Important Guidelines
- Ask specific, not generic questions
- Build on what candidate just said
- One question at a time
- Keep questions concise
- Sound natural and conversational
Your follow-up question:
"""
return prompt
def format_job_requirements(self, requirements: Dict) -> str:
"""Format job requirements for prompt"""
return f"""
Title: {requirements['title']}
Key Skills: {', '.join(requirements['required_skills'])}
Experience Level: {requirements['experience_level']}
Key Responsibilities: {requirements['responsibilities']}
"""
def format_retrieved_contexts(self, contexts: List[str]) -> str:
"""Format retrieved contexts"""
formatted = []
for i, context in enumerate(contexts, 1):
formatted.append(f"[Context {i}]\n{context}\n")
return '\n'.join(formatted)
Context Window Management
LLMs have token limits. Manage context carefully:
import tiktoken
class ContextWindowManager:
def __init__(self, model_name="gpt-4", max_tokens=8000):
self.encoding = tiktoken.encoding_for_model(model_name)
self.max_tokens = max_tokens
self.response_buffer = 1000 # Reserve for LLM response
def count_tokens(self, text: str) -> int:
"""Count tokens in text"""
return len(self.encoding.encode(text))
def fit_context_to_window(
self,
base_prompt: str,
retrieved_contexts: List[str],
conversation_history: List[str]
) -> str:
"""Fit all context within token limit"""
# Calculate token budgets
base_tokens = self.count_tokens(base_prompt)
available_tokens = self.max_tokens - base_tokens - self.response_buffer
# Allocate tokens
context_budget = int(available_tokens * 0.6)
history_budget = int(available_tokens * 0.4)
# Trim retrieved contexts
trimmed_contexts = self.trim_to_budget(
retrieved_contexts,
context_budget
)
# Trim conversation history (keep most recent)
trimmed_history = self.trim_history_to_budget(
conversation_history,
history_budget
)
# Build final prompt
final_prompt = self.assemble_prompt(
base_prompt,
trimmed_contexts,
trimmed_history
)
return final_prompt
def trim_to_budget(
self,
texts: List[str],
budget: int
) -> List[str]:
"""Trim texts to fit within token budget"""
trimmed = []
current_tokens = 0
for text in texts:
text_tokens = self.count_tokens(text)
if current_tokens + text_tokens <= budget:
trimmed.append(text)
current_tokens += text_tokens
else:
# Can we fit a truncated version?
remaining = budget - current_tokens
if remaining > 100: # Minimum useful size
truncated = self.truncate_text(text, remaining)
trimmed.append(truncated)
break
return trimmed
def truncate_text(self, text: str, max_tokens: int) -> str:
"""Truncate text to max tokens"""
tokens = self.encoding.encode(text)
truncated_tokens = tokens[:max_tokens]
return self.encoding.decode(truncated_tokens) + "..."
Component 5: Response Generation and Validation
Generating Context-Aware Responses
from openai import OpenAI
class InterviewResponseGenerator:
def __init__(self):
self.client = OpenAI()
self.model = "gpt-4-turbo-preview"
async def generate_followup_question(
self,
prompt: str,
temperature: float = 0.7,
max_retries: int = 3
) -> str:
"""Generate follow-up question with retry logic"""
for attempt in range(max_retries):
try:
response = self.client.chat.completions.create(
model=self.model,
messages=[
{
"role": "system",
"content": "You are an expert interviewer conducting a professional, context-aware interview."
},
{
"role": "user",
"content": prompt
}
],
temperature=temperature,
max_tokens=200, # Follow-up questions should be concise
top_p=0.95
)
question = response.choices[0].message.content.strip()
# Validate question quality
if self.validate_question(question):
return question
else:
# Retry with lower temperature
temperature *= 0.8
except Exception as e:
if attempt == max_retries - 1:
raise
await asyncio.sleep(2 ** attempt) # Exponential backoff
return self.get_fallback_question()
def validate_question(self, question: str) -> bool:
"""Validate generated question meets quality standards"""
# Check length
if len(question) < 10 or len(question) > 300:
return False
# Check if it's actually a question
if not any(question.endswith(p) for p in ['?', '.', '!']):
return False
# Check for generic questions (avoid low-quality outputs)
generic_phrases = [
"tell me more",
"anything else",
"can you elaborate"
]
question_lower = question.lower()
if any(phrase in question_lower for phrase in generic_phrases):
# Too generic, request more specific
return False
return True
Ensuring Response Relevance
Validate that generated questions are relevant to conversation:
class RelevanceValidator:
def __init__(self):
self.embedding_gen = EmbeddingGenerator()
def check_relevance(
self,
generated_question: str,
candidate_response: str,
job_requirements: str,
threshold: float = 0.6
) -> bool:
"""Check if generated question is relevant"""
# Create embeddings
question_emb = self.embedding_gen.generate_embedding(generated_question)
context_text = f"{candidate_response} {job_requirements}"
context_emb = self.embedding_gen.generate_embedding(context_text)
# Calculate similarity
similarity = cosine_similarity(
question_emb.reshape(1, -1),
context_emb.reshape(1, -1)
)[0][0]
return similarity >= threshold
Advanced RAG Techniques
1. Hierarchical Retrieval
For complex organizations with nested context:
class HierarchicalRetriever:
def retrieve_hierarchical(
self,
query: str,
company_id: str,
department_id: str,
role_id: str
) -> List[str]:
"""Retrieve context at multiple hierarchy levels"""
# Level 1: Role-specific context (highest priority)
role_contexts = self.retrieve_with_filter(
query,
{'role_id': role_id},
top_k=3
)
# Level 2: Department context
dept_contexts = self.retrieve_with_filter(
query,
{'department_id': department_id},
top_k=2
)
# Level 3: Company-wide context
company_contexts = self.retrieve_with_filter(
query,
{'company_id': company_id},
top_k=2
)
# Combine with priority weighting
all_contexts = (
role_contexts + # Most specific
dept_contexts + # Medium specificity
company_contexts # Most general
)
return self.deduplicate(all_contexts)
2. Temporal Awareness
Track when information was added/updated:
def retrieve_with_temporal_awareness(
self,
query: str,
prefer_recent: bool = True,
time_decay_factor: float = 0.1
) -> List[str]:
"""Retrieve with temporal decay for older information"""
results = self.vector_store.query(query, top_k=20)
if prefer_recent:
# Apply time decay to scores
current_time = datetime.now()
for result in results:
doc_age_days = (current_time - result.metadata['created_at']).days
time_penalty = 1.0 - (doc_age_days * time_decay_factor)
time_penalty = max(0.1, time_penalty) # Minimum weight
result.score *= time_penalty
# Re-sort by adjusted scores
results.sort(key=lambda x: x.score, reverse=True)
return results[:5]
3. Feedback-Based Improvement
Learn from interview outcomes:
class FeedbackLearner:
def record_question_effectiveness(
self,
question: str,
retrieved_contexts: List[str],
candidate_response_quality: float, # 0-1 score
eventual_hire_outcome: bool
):
"""Record how effective retrieval was"""
self.feedback_db.insert({
'question': question,
'contexts_used': retrieved_contexts,
'response_quality': candidate_response_quality,
'hire_outcome': eventual_hire_outcome,
'timestamp': datetime.now()
})
def optimize_retrieval_weights(self):
"""Adjust retrieval based on feedback"""
# Analyze which types of context led to better outcomes
feedback_data = self.feedback_db.query_recent(days=90)
# Calculate context type effectiveness
context_effectiveness = {}
for feedback in feedback_data:
for context in feedback['contexts_used']:
context_type = context['metadata']['document_type']
if context_type not in context_effectiveness:
context_effectiveness[context_type] = []
context_effectiveness[context_type].append(
feedback['response_quality']
)
# Update retrieval weights
for context_type, scores in context_effectiveness.items():
avg_effectiveness = np.mean(scores)
self.retrieval_weights[context_type] = avg_effectiveness
Performance Optimization
Caching Strategy
Cache frequently accessed contexts:
from functools import lru_cache
import redis
class CachedRetriever:
def __init__(self):
self.redis_client = redis.Redis(host='localhost', port=6379)
self.cache_ttl = 3600 # 1 hour
def retrieve_with_cache(self, query: str, job_id: str) -> List[str]:
"""Retrieve with Redis caching"""
cache_key = f"retrieval:{job_id}:{hashlib.md5(query.encode()).hexdigest()}"
# Check cache
cached_result = self.redis_client.get(cache_key)
if cached_result:
return json.loads(cached_result)
# Retrieve if not cached
results = self.retrieve(query)
# Cache results
self.redis_client.setex(
cache_key,
self.cache_ttl,
json.dumps(results)
)
return results
Batching and Async Operations
import asyncio
class AsyncRAGPipeline:
async def process_batch_retrievals(
self,
queries: List[str]
) -> List[List[str]]:
"""Process multiple retrievals in parallel"""
tasks = [
self.retrieve_async(query)
for query in queries
]
results = await asyncio.gather(*tasks)
return results
async def retrieve_async(self, query: str) -> List[str]:
"""Async retrieval operation"""
# Generate embedding
embedding = await self.async_embedding_gen(query)
# Query vector store
results = await self.vector_store.query_async(embedding)
return results
Monitoring and Evaluation
Key Metrics
class RAGMetricsTracker:
def track_retrieval_metrics(self):
"""Track RAG system performance"""
metrics = {
# Retrieval Quality
'retrieval_relevance': self.calculate_relevance(),
'context_utilization': self.calculate_utilization(),
'retrieval_diversity': self.calculate_diversity(),
# Performance
'avg_retrieval_latency': self.calculate_latency(),
'cache_hit_rate': self.calculate_cache_hits(),
'tokens_per_retrieval': self.calculate_token_usage(),
# Business Impact
'question_relevance_score': self.calculate_question_quality(),
'interview_completion_rate': self.calculate_completion_rate(),
'candidate_satisfaction': self.calculate_satisfaction()
}
return metrics
Conclusion
RAG architecture transforms AI interview systems from rigid, template-based tools into adaptive, context-aware conversational agents. Key takeaways:
- Chunking strategy matters: Semantic chunking outperforms fixed-size
- Hybrid retrieval wins: Combine dense and sparse for best results
- Context management is critical: Stay within token limits intelligently
- Validate everything: Ensure retrieved context is relevant and generated questions are high-quality
- Monitor and improve: Use feedback to continuously optimize
The future of HR tech lies in systems that understand nuance, adapt to context, and conduct truly intelligent conversations. RAG makes this possible.
About the Author
Ademola Balogun is the founder and CEO of 180GIG Ltd, creators of Squrrel—an AI-powered interview platform that makes hiring smarter and more equitable. With an MSc in Data Science from Birkbeck, University of London, he specializes in building practical AI solutions for real-world problems. He also created Trading Flashes ⚡, an AI-driven newsletter platform for financial markets.
Top comments (0)