

 Skip to content

 Log in

 Create account

 DEV Community

 Add reaction

 Like

 Unicorn

 Exploding Head

 Raised Hands

 Fire

 Jump to Comments

 Save

 Copy link

Copied to Clipboard

 Share to Twitter

 Share to LinkedIn

 Share to Reddit

 Share to Hacker News

 Share to Facebook

 Share to Mastodon

 Share Post via...

 Report Abuse

 Artem Poluektov

 Posted on Mar 19, 2023

 iOS PDFKit tutorial: Text Annotations & more

 #ios
 #swift
 #pdfkit

 This is the second article about Apple’s PDFkit featuring working with Text Annotations, document auto-saving and PencilKit.

	
First article is about PDFKit basics & Ink annotations
	Third article is about creating PDF document on device and inserting/removing pages

 PencilKit

We tried to implement PencilKit support in our app right after iOS 13 release. We even created a ticket to Apple Technical Support asking is there any easy way to do so. Short answer is NO.

You just can't use PencilKit together with PDFKit like how it works in native iOS markup screens.

Apple Technical Support answer:

The PencilKit team recommends developers put a PKCanvasView over each PDFPage. Signatures are a little different - you'd probably need to grab the PKDrawing from the PKCanvasView and then render the PKDrawing as an image inside of a PDFPage as you would a watermark.

Proposed solution seems to be impossible to implement (adding PKCanvasView to PDFPage). Second part (about grabbing PKDrawing) seems to be not the right way for our task too because of requirement to zoom page and erase previously added annotations. So, I feel that our solution from the first part of this tutorial is still the right one.

PKToolPicker seems not to be the right fit as well. It looks much better than out instruments view, but is completely not customizable. For example, in iOS 13 it features ruler, and if we don't need it in our app, we're still unable to remove it from ToolPicker. Hope, Apple would add some ways for customization in future releases.

 Text annotations

Text annotations seems to be easier than drawing (Ink). However due to lack of documentation and sample code (again!) it wasn't an easy task.

So, let's assume we need to add some "Hello, world!" text to some place on a document's last page. To do so, write the code below (in your Drawing View Controller, for this example):

func addDateAnnotation() {
 guard let document = pdfView.document else { return }
 let lastPage = document.page(at: document.pageCount - 1)
 let annotation = PDFAnnotation(bounds: CGRect(x: 100, y: 100, width: 100, height: 20), forType: .freeText, withProperties: nil)
 annotation.contents = "Hello, world!"
 annotation.font = UIFont.systemFont(ofSize: 15.0)
 annotation.fontColor = .blue
 annotation.color = .clear
 lastPage?.addAnnotation(annotation)
}

First, you need a page where you want to add annotation. Then you need to set following properties:

	
contents: text to display,
	
font: font,
	
fontColor: foreground color,
	
color: background color.

That's it. Just don't forget to save your document.

 Annotation types

In one of our tasks we needed to iterate through all annotations array to remove annotation of the specific type. We found that calling PDFAnnotationSubtype.freeText and annotation.type would actually return different results!

PDFAnnotationSubtype.freeText // "/freeText"
annotation.type // "FreeText"

So, to filter annotations of the specific type we had to call:

allPageAnnotations.filter { $0.type == "FreeText" }

instead of

allPageAnnotations.filter { $0.type == PDFAnnotationSubtype.freeText }

 Next & Previous buttons

Implementing next & previous buttons [which are very useful for your users] is very easy. Just add those buttons in your Storyboard and call one of those methods:

pdfView.goToPreviousPage(nil)
// or
pdfView.goToNextPage(nil)

 Auto-saving the document

Due to our long history with crashes we decided to implement auto-saving feature. We wanted to save PDFDocument after each successfully drawn annotation and used this code:

pdfDocument.write(to: url)

However, with larger documents this code caused UI freezes, so we tried to do it in background:

DispatchQueue.global(qos: .background).async {
 pdfDocument.write(to: url)
}

Which caused crashes when document's content changed during saving.

Our final solution was to use PDFDocument method dataRepresentation combined with simple Timer:

if let data = pdfDocument.dataRepresentation() {
 try? data.write(to: url)
}

This solution didn't cause crashes, but made PDFView blink on this call. The only working solution we found was:

	create a copy of PDFDocument ,
	apply all changes (adding/removing annotations) to visible document in PDFView and to copy, only add completed annotations due to performance,
	save copy each 30 seconds (for example),
	track all changes during saving: you cannot apply changes during save, so need to store changes history in memory during saving, which may take some time with a bigger files.

Useful links

You would find some initial information about PDFKit in this WWDC video:

	https://developer.apple.com/videos/play/wwdc2017/241/

Here you'll find Apple's sample code of advanced drawing with Apple Pencil. Not sure it would work really great with PDFs due to performance issues.

	https://developer.apple.com/documentation/uikit/touches_presses_and_gestures/leveraging_touch_input_for_drawing_apps

If you're looking for any alternative solution, check one of these frameworks. I haven't found any free or open-source solutions, and licenses for those in the list are pretty expensive ($500-$1K+).

PSPDFKit. Features drop-in replacement APIs for Apple's

	PDFKit,
	Foxit,
	PDFTron.

 Top comments (0)

 Subscribe

 Personal
 Trusted User

 Create template

 Templates let you quickly answer FAQs or store snippets for re-use.

 Submit
 Preview
 Dismiss

 Code of Conduct
 •
 Report abuse

 Are you sure you want to hide this comment? It will become hidden in your post, but will still be visible via the comment's permalink.

 Hide child comments as well

 Confirm

 For further actions, you may consider blocking this person and/or reporting abuse

 Read next

 How to Fix Failed Archive on Xcode 14.3 (rsync error: some files could not be transferred (code 23))

 Curtly Critchlow - Apr 3 '23

 Visualize Swift Package and Xcode Project with graph

 Long Vu - Mar 22 '23

 SwiftUI - Open Deeplink url from your terminal

 Simran - Mar 30 '23

 Certificate pinning and Public key pinning

 Ben - Feb 28 '23

 Artem Poluektov

 Follow

 	

 Joined

 Mar 19, 2023

 More from Artem Poluektov

 Mobile database optimization: Realm vs. SQLite

 #swift
 #ios
 #realm
 #sqlite

 iOS PDFKit: creating PDF document in Swift, inserting/deleting pages

 #ios
 #swift
 #pdfkit

 iOS PDFKit Ink Annotations Tutorial

 #ios
 #swift
 #pdfkit

 DEV Community — A constructive and inclusive social network for software developers. With you every step of your journey.

 	

 Home

	

 Podcasts

	

 Videos

	

 Tags

	

 DEV Help

	

 Forem Shop

	

 Advertise on DEV

	

 DEV Showcase

	

 About

	

 Contact

	

 Guides

	

 Software comparisons

 	

 Code of Conduct

	

 Privacy Policy

	

 Terms of use

 Built on Forem — the open source software that powers DEV and other inclusive communities.

 Made with love and Ruby on Rails. DEV Community © 2016 - 2024.

 We're a place where coders share, stay up-to-date and grow their careers.

 Log in

 Create account

