This is a submission for the Redis AI Challenge: Real-Time AI Innovators.
This is a submission for the Redis AI Challenge: Beyond the Cache.
Imagine joining any conversation โ meetings, lectures, or live events โ and instantly seeing AIโpowered captions with seamless Q&A support.
LiveCaption AI makes realโtime, intelligent accessibility possible with Redis powering its lightningโfast core.
๐ What I Built
LiveCaption AI is a revolutionary real-time accessibility platform that transforms audio conversations into live captions, intelligent transcripts, and contextual Q&A responses. Built with Redis as the backbone for ultra-fast real-time data processing, the platform delivers instant audio transcription, semantic caching for AI responses, and live streaming of captions to multiple clients simultaneously.
With it, anyone โ especially hearing-impaired users โ can follow conversations in realโtime, ask questions about the conversation history, and receive instant, contextโaware AI answers.
โจ Key Features:
๐ค Real-Time Audio Transcription - Browser-based speech recognition with Web Speech API
๐ก Live Caption Broadcasting - WebSocket-powered real-time caption streaming to multiple clients
๐ง Intelligent Q&A System - Context-aware question answering using cached transcripts
๐ Smart Caching Layer - Redis-powered semantic caching for AI responses and transcriptions
๐ Live Analytics Dashboard - Real-time caption statistics and session management
๐ Multi-Session Support - Concurrent caption streams for different sessions/rooms
โฟ Accessibility First - Designed for hearing-impaired users and accessibility compliance
๐ Features and the Redis Technologies Behind Them
Feature | Redis Technology | Benefit |
---|---|---|
๐ค Real-Time Captions | Redis Streams | Subโ100โฏms realโtime caption delivery to all viewers |
โ Intelligent Q&A | Redis JSON + Semantic Cache | Instant, contextโaware AI answers using cached session data |
๐ Multi-Client Sync | Redis Pub/Sub | Realโtime updates and coordination across all connected clients |
๐ Session Analytics | Redis JSON + Hash Maps | Live metrics on caption count, confidence, and usage |
โ๏ธ User Preferences | Redis Hash Maps | Personalized accessibility settings persisted across sessions |
๐ฌ Demo
Frontend (React): Hosted on Vercel.
Backend (Nodejs + Redis): Hosted on Render.
๐ Live demo link: https://redis-captions-overlay.vercel.app/
๐ Github link: https://github.com/Aryakoste/redis-captions-overlay
๐ Note:
The live version on Render free tier does not include live Python LLM + transcription workers due to service type restrictions and free tier plan.
When run locally, all features including full Q&A and advanced transcription work flawlessly. I have shared below screenshots.
๐ท Screenshots
1) ๐ข Live Real-Time Caption Display
2) โ Intelligent Q&A System
3) ๐ Session Analytics Dashboard
4) ๐ Transcripts Search
5) ๐ Audio Recorder and File Uploader
6) ๐ Captions/Knowledge Base Search
โ๏ธHow I Used Redis as My Real-Time Data Layer
Redis 8 is central for this project:
๐ฏ 1. Redis Streams for Real-Time Caption Broadcasting
await redis.xAdd('captions:stream', '*', {
text: transcription.text,
session_id: sessionId,
timestamp: Date.now(),
confidence: transcription.confidence,
language: transcription.language
});
const messages = await redis.xRead(
{ key: 'captions:stream', id: '$' },
{ BLOCK: 0 }
);
โก 2. Semantic Caching for AI Response Optimization
const cacheKey = `ai_cache:llm:${crypto.createHash('sha256')
.update(question + context).digest('hex')}`;
const cached = await redis.get(cacheKey);
if (cached) return JSON.parse(cached);
await redis.setEx(cacheKey, 7200, JSON.stringify(aiResponse));
๐ 3. Redis JSON for Session Management & Analytics
await redis.json.set(`session:${sessionId}`, '$', {
id: sessionId,
startTime: Date.now(),
captionCount: 0,
analytics: { totalWords: 0, avgConfidence: 0 }
});
await redis.json.numIncrBy(`session:${sessionId}`, '$.captionCount`, 1);
๐ 4. Pub/Sub for Multi-Client Synchronization
await redis.publish(`captions:${sessionId}`, JSON.stringify({
type: 'new_caption',
data: captionData
}));
redis.subscribe(`captions:${sessionId}`, (message) => {
broadcastToClients(message);
});
๐พ 5. Redis Hash Maps for User Preferences
await redis.hSet(`user:${userId}:prefs`, {
fontSize: 'large', contrast: 'high', language: 'en-US'
});
๐ Performance Metrics
Metric | Value |
---|---|
Caption Latency | <100 ms |
AI Cache Hit Rate | 85 % |
Concurrent Users Tested | 500+ |
WebSocket Connections | 1 000+ |
Redis Memory Usage | <50 MB |
Transcription Accuracy | 95 %+ |
๐ Architecture & Technical Stack
- Backend (Node.js + Express) โ Real-time WebSocket server, REST API, Redis integration
- Python Worker โ LLM Q&A and audio transcription jobs via Redis streams
- Frontend (React) โ Web Speech API for browser transcription, WebSocket client, accessibility-first UI
- Redis Features โ Streams, JSON, Pub/Sub, Caching, Hash Maps
๐ Innovation Highlights
๐ Ultra-Fast AI Response Caching โ Reduces AI response time by 98% (3s โ 50ms)
๐ก Real-Time Multi-Client Broadcasting โ Sub-100ms latency for hundreds of users
๐ง Context-Aware Intelligence โ Maintains conversation context via Redis JSON
โฟ Accessibility-First Design โ High-contrast themes, keyboard navigation, screen reader support
๐ฎ Future Enhancements
- Vector Search for semantic caption search
- Real-time Translation with Redis-cached models
- Voice Biometrics for speaker identification
- Video conferencing platform integrations
- Offline-capable mobile app
Thank you Redis and DEV for this challenge!
Making AI-powered accessibility real-time, open, and scalable.
Tags: #RedisAI #RealTime #Accessibility #WebSockets #AI #React #NodeJS
Top comments (0)