When building Android apps with Kotlin and Jetpack Compose, it's easy to create simple UI components. But how do you leverage Kotlin's powerful features to structure a Todo list that's maintainable, testable, and follows modern Android development patterns ?
In this comprehensive guide, I'll walk you through a real-world Todo application built entirely in Kotlin that demonstrates professional Android development practices. We'll explore Kotlin-specific patterns like coroutines, sealed classes, and extension functions, alongside advanced Compose techniques including infinite scrolling, pull-to-refresh, and comprehensive testing strategies using Kotlin's testing ecosystem.
By the end of this article, you'll have a solid foundation for building production-ready Android applications that are both maintainable and delightful to use.
ποΈ Architecture Overview
Our Todo app follows a clean architecture pattern with clear separation of concerns. This approach ensures our code is testable, maintainable, and follows the Single Responsibility Principle:
βββ ui/
β βββ TodoScreen.kt # Composable UI layer
βββ domain/
β βββ TodoRepository.kt # Business logic abstraction
βββ data/
β βββ KtorTodoRepository.kt # Data source implementation
βββ model/
β βββ Todo.kt # Domain models
βββ TodoViewModel.kt # UI state management
Why This Architecture ?
π― Separation of Concerns: Each layer has a single responsibility:
- UI Layer: Handles user interactions and displays data
- Domain Layer: Defines business rules and contracts
- Data Layer: Manages data sources and API calls
- ViewModel: Bridges UI and business logic
π§ͺ Testability: Dependencies are injected, making each component easily mockable
π Flexibility: Easy to swap implementations (e.g., different data sources)
π Scalability: New features can be added without breaking existing code
π The Data Model: Kotlin's Type Safety Excellence
Let's start with our simple but powerful Todo model that showcases Kotlin's modern language features:
@Serializable
data class Todo(
val id: Int,
val title: String,
val userId: Int? = null,
val completed: Boolean? = null
)
Kotlin-First Design Decisions:
π§ @Serializable
Annotation - Kotlin Serialization Power:
- Uses Kotlin's built-in
kotlinx.serialization
instead of Java-based Gson/Moshi - Provides compile-time safety and better performance
- Generates serializers at compile time, reducing runtime reflection
- Fully integrated with Kotlin's type system and null safety
β Nullable Fields (userId?
, completed?
) - Null Safety in Action:
- Leverages Kotlin's null safety to handle real-world API inconsistencies
- Compile-time null checks prevent NullPointerException crashes
- Some APIs might not return all fields consistently
- Allows for partial data scenarios (e.g., draft todos)
π Immutable Data Class - Kotlin's Functional Programming:
-
val
properties ensure thread safety by default - Kotlin's
data class
auto-generatesequals()
,hashCode()
,toString()
, andcopy()
- Predictable state changes through
copy()
function with named parameters - Works seamlessly with Compose's recomposition system
π‘ Pro Tip: This model works perfectly with the JSONPlaceholder API, but can easily be extended with validation, custom serializers, or additional fields without breaking existing code.
π Repository Pattern with Ktor: Kotlin-Native HTTP Client
The repository pattern provides a clean abstraction between our business logic and data sources. This makes our code more testable and allows us to easily switch between different data sources.
The Contract (Domain Layer)
interface TodoRepository {
suspend fun fetchTodos(limit: Int = 5): List<Todo>
suspend fun fetchTodosPage(start: Int, limit: Int): List<Todo>
}
Key Benefits of This Interface:
- π― Single Source of Truth: All data access goes through this contract
- π§ͺ Mockable: Easy to create fake implementations for testing
- π Flexible: Can be implemented with REST, GraphQL, Room, etc.
- β‘ Suspend Functions: Built for coroutines and async operations
The Implementation (Data Layer)
class KtorTodoRepository(
private val client: HttpClient,
private val baseUrl: String = "https://jsonplaceholder.typicode.com"
): TodoRepository {
override suspend fun fetchTodosPage(start: Int, limit: Int): List<Todo> {
val url = "$baseUrl/todos?_start=$start&_limit=$limit"
return client.get(url).body() // Auto-deserialization magic!
}
companion object {
fun defaultClient(): HttpClient = HttpClient {
install(ContentNegotiation) {
json(Json {
ignoreUnknownKeys = true // Ignore unknown JSON fields
isLenient = true // Accept malformed JSON
explicitNulls = false // Don't serialize null values
})
}
}
}
}
Why Ktor Over Retrofit ? Pure Kotlin Advantages
π **Kotlin Coroutines Integration:
- Ktor is built on Kotlin coroutines from the ground up (not retrofitted)
- No callback-to-coroutine conversion overhead like Retrofit
- Native
suspend
functions without adapters - Streaming support with Kotlin Flow out of the box
ποΈ **Kotlin DSL Configuration:
- Highly customizable HTTP client using Kotlin's expressive DSL
- Plugin-based architecture with type-safe builders
- Easy to add logging, caching, authentication using Kotlin syntax
π§ **100% Kotlin-First Design:
- Written entirely in Kotlin (not Java with Kotlin compatibility)
- Leverages advanced Kotlin features like extension functions, reified generics, and inline functions
- Seamless integration with
kotlinx.serialization
(no annotations processor needed) - Uses Kotlin's multiplatform capabilities (works on JVM, Android, iOS, JS)
Pagination Strategy
Notice how fetchTodosPage
uses URL parameters _start
and _limit
. This approach:
- β Works with most REST APIs
- β Provides efficient server-side pagination
- β Reduces memory usage on mobile devices
- β Enables infinite scroll patterns
π§ ViewModel: Kotlin Coroutines & State Management Mastery
Our ViewModel showcases advanced Kotlin features for state management and asynchronous programming. Let's break down how Kotlin's language features make this architecture both powerful and elegant:
class TodoViewModel(
private val repository: TodoRepository,
private val ioDispatcher: CoroutineDispatcher = Dispatchers.IO,
private val artificialDelayMs: Long = 0L,
autoLoad: Boolean = true,
private val pageSize: Int = 20
) : ViewModel() {
var todos = mutableStateOf<List<Todo>>(emptyList())
private set
var isLoading = mutableStateOf(false)
private set
var errorMessage = mutableStateOf<String?>(null)
private set
// Pagination states
var isLoadingMore = mutableStateOf(false)
private set
var endReached = mutableStateOf(false)
private set
private var nextStart = 0
private var loadJob: Job? = null
State Management Philosophy
π― **Single Source of Truth:
- All UI state lives in the ViewModel
- Compose UI reactively observes these states
- No state duplication between layers
π **Encapsulation:
- Public getters with private setters
- External code can read state but not modify it directly
- All state changes go through controlled methods
β‘ **Reactive Design:
- Uses
mutableStateOf
for Compose integration - Automatic recomposition when state changes
- Efficient updates with structural sharing
Key Features Deep Dive:
1. π Kotlin Constructor-Based Dependency Injection:
private val repository: TodoRepository, // Interface-based abstraction (Kotlin's interface power)
private val ioDispatcher: CoroutineDispatcher, // Kotlin Coroutines dispatcher for testability
private val artificialDelayMs: Long = 0L, // Named parameter with default value (Kotlin feature)
autoLoad: Boolean = true, // Kotlin's named parameters for clarity
private val pageSize: Int = 20 // Immutable configuration
Kotlin Advantages Here:
- Named Parameters: Crystal clear constructor calls
- Default Values: Reduce boilerplate in common cases
-
Immutable by Default:
val
parameters prevent accidental mutations
2. π Smart Pagination Management:
-
nextStart
: Tracks the current page position -
endReached
: Prevents unnecessary API calls -
isLoadingMore
: Shows loading indicators for subsequent pages
3. π― Robust Error Handling:
- Non-blocking errors (show data + error message)
- Retry mechanisms with proper cancellation
- Graceful degradation when network fail
4. π Advanced Kotlin Coroutines Management:
-
loadJob
: Leverages Kotlin's structured concurrency for cancellable operations -
viewModelScope
: Kotlin's lifecycle-aware coroutine scope with automatic cleanup - Custom dispatcher injection using Kotlin's dependency injection patterns
- Coroutines > Threads: No callback hell, sequential-looking async code
- Structured Concurrency: Parent-child job relationships prevent memory leaks
The Core Loading Logic
fun retry(): Job? = refresh(force = true)
private fun refresh(force: Boolean): Job? {
// Avoid duplicate requests unless forced
if (isLoading.value && !force) return loadJob
if (force) loadJob?.cancel() // Cancel previous request
// Reset pagination state
nextStart = 0
endReached.value = false
loadJob = viewModelScope.launch(ioDispatcher) {
try {
isLoading.value = true
errorMessage.value = null // Clear previous errors
val page = repository.fetchTodosPage(start = nextStart, limit = pageSize)
todos.value = page
nextStart += page.size
endReached.value = page.size < pageSize // Detect last page
} catch (e: Exception) {
errorMessage.value = "Erreur de chargement : ${e.message}"
} finally {
isLoading.value = false // Always reset loading state
}
}
return loadJob
}
π What Makes This Kotlin Code Special?
Smart Function Design: Uses Kotlin's named parameters (force: Boolean
) for readable API
Coroutine Cancellation: Leverages Kotlin's structured concurrency for proper request cancellation
Immutable State Updates: Uses Kotlin's thread-safe state management with mutableStateOf
Exception Handling: Kotlin's try-catch-finally
with smart cast and null safety
Resource Management: finally
block ensures cleanup, preventing memory leaks
Kotlin DSL: The viewModelScope.launch
creates readable async code without callback complexity
π¨ Composable UI with Advanced Features
Our TodoScreen
composable showcases advanced Compose patterns that you'll use in production apps. Let's explore each feature and understand why it matters:
1. Pull-to-Refresh: Native Mobile UX
@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun TodoScreen(vm: TodoViewModel) {
val todos by vm.todos
val isLoading = vm.isLoading.value
val ptrState = rememberPullToRefreshState()
PullToRefreshBox(
isRefreshing = isLoading,
onRefresh = { vm.retry() },
state = ptrState,
modifier = Modifier.fillMaxSize()
) {
// Your entire screen content goes here
}
}
π― Why Pull-to-Refresh Matters:
- Native Feel: Users expect this interaction on mobile
- Visual Feedback: Built-in loading animations and haptics
- Accessibility: Automatic screen reader support
- Material 3: Follows latest Google design guidelines
βοΈ Implementation Details:
-
rememberPullToRefreshState()
: Manages gesture detection and animation state -
isRefreshing
: Controls when the loading indicator shows -
onRefresh
: Triggers your data loading logic - Wraps your entire screen content for seamless integration
2. Smart Search & Filtering: Performance-First Approach
var query by remember { mutableStateOf("") }
var filter by remember { mutableStateOf(TodoFilter.All) }
val filteredTodos by remember(todos, query, filter) {
derivedStateOf {
todos.asSequence() // Lazy evaluation for performance
.filter { t ->
when (filter) {
TodoFilter.All -> true
TodoFilter.Open -> !t.completed!!
TodoFilter.Done -> t.completed == true
}
}
.filter { t ->
query.isBlank() ||
t.title.contains(query, ignoreCase = true) ||
t.id.toString().contains(query) // Search by ID too!
}
.toList()
}
}
π Advanced Filtering Techniques:
1. derivedStateOf
Magic:
- β
Only recalculates when dependencies change (
todos
,query
,filter
) - β Skips unnecessary recompositions
- β Memoizes results automatically
2. **Sequence vs List Performance:
-
asSequence()
: Lazy evaluation, processes items one-by-one - Perfect for filter chains on large datasets
- Stops early when possible (short-circuiting)
3. **Multi-Field Search:
- Title search with
ignoreCase = true
- ID search for power users
- Blank query handling for "show all" behavior
4. **Kotlin Enum & When Expression Power:
private enum class TodoFilter { All, Open, Done }
// Kotlin's when expression with exhaustive checking
when (filter) {
TodoFilter.All -> true
TodoFilter.Open -> !t.completed!! // Smart cast after null check
TodoFilter.Done -> t.completed == true
// Compiler ensures all cases are covered!
}
-
Sealed Classes Alternative: Could use
sealed class
for even more type safety - Exhaustive When: Kotlin compiler enforces all cases are handled
- Smart Casting: Kotlin automatically casts after null checks
-
Extension Functions: Could add
TodoFilter.matches(todo: Todo)
extension
π‘ Pro Tips:
- Use
remember
with dependencies to optimize recalculation - Consider debouncing search queries for better UX
- Add empty state handling for "no results" scenarios
3. Infinite Scroll: The Art of Seamless Pagination
val listState = rememberLazyListState()
LaunchedEffect(listState, todos.size) {
snapshotFlow { listState.layoutInfo.visibleItemsInfo.lastOrNull()?.index }
.filterNotNull()
.distinctUntilChanged()
.collectLatest { lastVisible ->
val threshold = 5 // Load more when 5 items from the end
if (lastVisible >= todos.lastIndex - threshold &&
!endReached && !isLoadingMore && !isLoading) {
vm.loadMore()
}
}
}
π― Breaking Down the Infinite Scroll Magic:
1. **Smart Trigger Detection:
snapshotFlow { listState.layoutInfo.visibleItemsInfo.lastOrNull()?.index }
-
snapshotFlow
: Converts Compose state into a Flow -
layoutInfo.visibleItemsInfo
: Gets currently visible items -
lastOrNull()?.index
: Finds the index of the last visible item
2. **Performance Optimizations:
-
filterNotNull()
: Handles edge cases when no items are visible -
distinctUntilChanged()
: Prevents duplicate triggers for same position -
collectLatest
: Cancels previous operations if user scrolls quickly
3. **Intelligent Loading Logic:
val threshold = 5 // Configurable lookahead distance
if (lastVisible >= todos.lastIndex - threshold &&
!endReached && !isLoadingMore && !isLoading) {
vm.loadMore()
}
π‘οΈ Safeguards Prevent Common Issues:
-
threshold = 5
: Start loading before reaching the actual end -
!endReached
: Don't load if we've reached the last page -
!isLoadingMore
: Prevent duplicate loading requests -
!isLoading
: Don't interfere with initial loading
π± UX Benefits:
- Seamless Experience: Users never see loading screens
- Predictive Loading: Content loads before it's needed
- Memory Efficient: Only loads what's necessary
- Battery Friendly: Intelligent request batching
4. Animated Todo Cards: Delightful Micro-Interactions
@Composable
private fun AnimatedTodoCard(todo: Todo) {
var visible by remember { mutableStateOf(false) }
LaunchedEffect(Unit) { visible = true } // Trigger animation on first composition
AnimatedVisibility(
visible = visible,
enter = slideInVertically(initialOffsetY = { it / 3 }) + fadeIn(),
exit = fadeOut()
) {
Card(modifier = Modifier.fillMaxWidth()) {
Column(Modifier.padding(16.dp)) {
Text("Todo #${todo.id}", style = MaterialTheme.typography.labelSmall)
Text(todo.title, style = MaterialTheme.typography.bodyLarge)
}
}
}
}
π¨ Animation Breakdown:
1. **State-Driven Animation:
-
visible
starts asfalse
, becomestrue
immediately - This triggers the
enter
animation automatically -
remember
ensures state survives recompositions
2. **Compound Animations:
enter = slideInVertically(initialOffsetY = { it / 3 }) + fadeIn()
- Slide: Cards slide up from 1/3 of their height below
- Fade: Simultaneous opacity transition from 0 to 1
-
Compound:
+
operator combines multiple animations
3. **Performance Considerations:
-
LaunchedEffect(Unit)
: Runs only once per card instance - Animations are GPU-accelerated by default
-
remember
prevents unnecessary state recreation
π― Why These Animations Work:
- Staggered Appearance: Each card animates independently
- Natural Motion: Slide + fade feels organic and smooth
- Attention Direction: Draws eyes to new content
- Polish Factor: Small details make big UX differences
β‘ Advanced Animation Techniques:
// For exit animations (when removing items):
exit = slideOutVertically(targetOffsetY = { -it / 3 }) + fadeOut()
// For spring-based animations:
enter = slideInVertically(
animationSpec = spring(
dampingRatio = Spring.DampingRatioMediumBouncy,
stiffness = Spring.StiffnessLow
)
) + fadeIn()
π§ͺ Kotlin Testing Ecosystem: Type-Safe Quality Assurance
Testing is the backbone of maintainable applications, and Kotlin provides exceptional tools for this. Our testing approach leverages Kotlin's coroutines, DSLs, and type safety to create robust, readable tests. Let's explore how Kotlin makes testing both powerful and enjoyable:
Test Dispatcher Setup: Controlling Time Itself
@get:Rule
val mainDispatcherRule = MainDispatcherRule(StandardTestDispatcher())
π Why Custom Test Dispatchers Matter:
Virtual Time Control:
-
StandardTestDispatcher
uses virtual time instead of real time - Tests run instantly, regardless of delays or timeouts
- Predictable, deterministic test execution
Coroutine Testing Benefits:
-
advanceUntilIdle()
: Fast-forward through all pending coroutines -
advanceTimeBy()
: Skip specific time intervals -
runCurrent()
: Execute only immediately scheduled tasks
Production vs Test Behavior:
// Production: Real network delays, unpredictable timing
viewModelScope.launch(Dispatchers.IO) { ... }
// Test: Controlled, virtual time execution
viewModelScope.launch(testDispatcher) { ... }
Fake Repository: Controlled Test Doubles
private class FakeTodoRepository(
private val result: Result<List<Todo>>,
private val delayMs: Long = 0L
): TodoRepository {
var calls: Int = 0
private set
override suspend fun fetchTodos(limit: Int): List<Todo> {
calls++
if (delayMs > 0) delay(delayMs)
return result.getOrElse { throw it }
}
}
π― Fake vs Mock vs Stub:
Fake Repository (Our Approach):
- β Implements the real interface
- β Provides working, simplified behavior
- β Stateful (tracks method calls)
- β Easy to configure for different scenarios
Why Kotlin Fakes Over Java Mocking Libraries?:
- Simpler Setup: Pure Kotlin code, no complex mock configuration or annotations
- Better Readability: Clear, explicit behavior using Kotlin's expressive syntax
-
Coroutine Native: Natural
suspend
function support without adapters - Type Safety: Kotlin's compile-time verification prevents test setup errors
- Kotlin Features: Leverage data classes, sealed classes, and extension functions in tests
π§ Advanced Fake Features:
class AdvancedFakeTodoRepository : TodoRepository {
private var shouldFail = false
private var networkDelay = 0L
private val callHistory = mutableListOf<String>()
fun simulateNetworkError() { shouldFail = true }
fun simulateSlowNetwork(delayMs: Long) { networkDelay = delayMs }
fun getCallHistory(): List<String> = callHistory.toList()
override suspend fun fetchTodos(limit: Int): List<Todo> {
callHistory.add("fetchTodos(limit=$limit)")
if (networkDelay > 0) delay(networkDelay)
if (shouldFail) throw IOException("Network error")
return generateFakeTodos(limit)
}
}
π Test Scenario Configuration:
// Success scenario
val successRepo = FakeTodoRepository(
result = Result.success(listOf(Todo(1, "Test")))
)
// Error scenario
val errorRepo = FakeTodoRepository(
result = Result.failure(IOException("Network failed"))
)
// Slow network scenario
val slowRepo = FakeTodoRepository(
result = Result.success(listOf(Todo(1, "Test"))),
delayMs = 2000L
)
Testing Async Behavior: Race Conditions & Cancellation
@Test
fun `retry cancels previous request and starts new one`() = runTest {
val repo = object : TodoRepository {
var calls = 0
override suspend fun fetchTodos(limit: Int): List<Todo> {
calls++
// First call takes 5 seconds, second call takes 1ms
if (calls == 1) delay(5_000) else delay(1)
return listOf(Todo(calls, "call-$calls"))
}
}
val vm = TodoViewModel(
repository = repo,
ioDispatcher = mainDispatcherRule.dispatcher,
artificialDelayMs = 0,
autoLoad = false
)
// Start first request (long running)
vm.retry()
runCurrent() // Start coroutine but don't wait
// Immediately start second request (should cancel first)
vm.retry()
// Fast-forward through all operations
advanceTimeBy(1_000)
advanceUntilIdle()
// Verify: Both calls were made, but only second succeeded
assertEquals(2, repo.calls)
assertEquals("call-2", vm.todos.value.first().title)
assertEquals(false, vm.isLoading.value)
}
π― What This Test Validates:
1. **Cancellation Logic:
- First request starts but gets cancelled
- Second request completes successfully
- No race conditions between requests
2. **State Management:
- Loading states are properly managed
- Final state reflects the latest request
- No stale data from cancelled operations
3. **Resource Management:
- Cancelled coroutines are properly cleaned up
- No memory leaks from hanging operations
β‘ Advanced Testing Patterns:
@Test
fun `loadIfIdle respects existing operation`() = runTest {
val repo = FakeTodoRepository(
result = Result.success(listOf(Todo(1, "test"))),
delayMs = 1000L
)
val vm = TodoViewModel(
repository = repo,
ioDispatcher = mainDispatcherRule.dispatcher,
autoLoad = false
)
// Start loading
vm.retry()
runCurrent()
assertTrue(vm.isLoading.value)
// Try to load again (should be ignored)
vm.loadIfIdle()
runCurrent()
// Verify only one call was made
assertEquals(1, repo.calls)
// Complete the operation
advanceUntilIdle()
assertEquals(1, vm.todos.value.size)
}
@Test
fun `error handling preserves previous data`() = runTest {
// First successful load
val successRepo = FakeTodoRepository(
result = Result.success(listOf(Todo(1, "success")))
)
val vm = TodoViewModel(successRepo, mainDispatcherRule.dispatcher, autoLoad = false)
vm.retry()
advanceUntilIdle()
// Switch to error repo and retry
vm.repository = FakeTodoRepository(
result = Result.failure(IOException("Network error"))
)
vm.retry()
advanceUntilIdle()
// Verify: Data preserved, error shown
assertEquals(1, vm.todos.value.size)
assertTrue(vm.errorMessage.value?.contains("Network error") == true)
}
π Testing Edge Cases:
- Rapid User Interactions: Multiple quick refresh attempts
- Network State Changes: Connection loss during operations
- Configuration Changes: ViewModel survival across rotations
- Memory Pressure: Large dataset handling
- Concurrent Operations: Multiple simultaneous requests
π Key Takeaways & Production Insights
After building and testing this Todo application, here are the essential lessons for production-ready Android development:
ποΈ Architecture Wins
- Repository Pattern: Clean separation between data and business logic
- Dependency Injection: Makes testing and maintenance significantly easier
- Single Source of Truth: ViewModel as the definitive state holder
- Interface Abstractions: Easy to swap implementations without breaking consumers
π± Mobile UX Excellence
- Pull-to-Refresh: Native gesture that users expect
- Infinite Scroll: Seamless content loading without pagination UI
- Smart Animations: Micro-interactions that delight users
- Error Recovery: Graceful handling of network issues and failures
β‘ Performance Optimization
-
derivedStateOf
: Efficient computed properties that only recalculate when needed - Lazy Sequences: Memory-efficient filtering and transformations
- Coroutine Management: Proper cancellation prevents resource leaks
- Virtual Time Testing: Fast, deterministic test execution
π§ Production-Ready Best Practices
β State Management
-
Immutable State: Using
mutableStateOf
with private setters - Reactive Updates: Automatic UI recomposition on state changes
- State Hoisting: Keep state in the appropriate scope (ViewModel vs Composable)
β Kotlin Coroutines Excellence
-
Lifecycle Awareness: Use
viewModelScope
with Kotlin's structured concurrency - Cancellation Support: Leverage Kotlin's cooperative cancellation for graceful shutdowns
-
Dispatcher Injection: Test with
StandardTestDispatcher
and virtual time -
Error Boundaries: Kotlin's
try-catch
with smart casting and sealed class errors - Flow & Channels: Use Kotlin Flow for reactive programming patterns
β Testing Strategy
- Unit Tests: Fast, isolated tests for business logic
- Integration Tests: Test component interactions
- UI Tests: End-to-end user journey validation
- Fake Dependencies: Controllable test doubles
β User Experience
- Progressive Loading: Show data immediately, load more in background
- Error Recovery: Users can retry failed operations
- Smooth Animations: 60fps transitions and micro-interactions
- Accessibility: Screen reader support and proper focus management
π Next Steps for Your Projects
This Todo application demonstrates patterns you can apply immediately:
- Start Simple: Begin with basic CRUD operations
- Add Polish: Implement animations and loading states
- Scale Up: Add caching, offline support, and synchronization
- Optimize: Profile performance and memory usage
- Test Everything: Comprehensive test coverage prevents regressions
π Final Thoughts
Building production-ready Android applications with Kotlin requires more than just making features work. It's about leveraging Kotlin's powerful language features to create maintainable, testable, and delightful experiences that users love and developers can confidently modify.
The Kotlin patterns demonstrated in this Todo appβcoroutines for async programming, data classes for immutable state, sealed classes for type safety, extension functions for clean APIs, and comprehensive testing with Kotlin's testing DSLsβform the foundation of successful Android projects that scale from prototype to production.
Top comments (0)