If your LLM application already works, you shouldn’t have to refactor it just to add observability, routing, or failover.
The Problem
You’ve built your LLM application.
It’s live. It works.
Now you want things like:
- Observability
- Load balancing
- Caching
- Provider failover
Most solutions require you to:
- Rewrite API calls
- Learn a new SDK
- Refactor stable code
- Re-test everything
That’s risky and expensive.
Bifrost was built to avoid this entirely.
You drop it in, change one URL, and you’re done.
maximhq
/
bifrost
Fastest LLM gateway (50x faster than LiteLLM) with adaptive load balancer, cluster mode, guardrails, 1000+ models support & <100 µs overhead at 5k RPS.
Bifrost
The fastest way to build AI applications that never go down
Bifrost is a high-performance AI gateway that unifies access to 15+ providers (OpenAI, Anthropic, AWS Bedrock, Google Vertex, and more) through a single OpenAI-compatible API. Deploy in seconds with zero configuration and get automatic failover, load balancing, semantic caching, and enterprise-grade features.
Quick Start
Go from zero to production-ready AI gateway in under a minute.
Step 1: Start Bifrost Gateway
# Install and run locally
npx -y @maximhq/bifrost
# Or use Docker
docker run -p 8080:8080 maximhq/bifrost
Step 2: Configure via Web UI
# Open the built-in web interface
open http://localhost:8080
Step 3: Make your first API call
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openai/gpt-4o-mini",
"messages": [{"role": "user", "content": "Hello, Bifrost!"}]
}'
That's it! Your AI gateway is running with a web interface for visual configuration, real-time monitoring…
OpenAI-Compatible API
Bifrost speaks the OpenAI API format.
If your code works with OpenAI, it will work with Bifrost.
Before
import openai
openai.api_key = "sk-..."
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": "Hello"}]
)
After
import openai
openai.api_base = "http://localhost:8080/openai"
openai.api_key = "sk-..."
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": "Hello"}]
)
One line changed.
Everything else stays the same.
Works With Major Frameworks
Because Bifrost is OpenAI-compatible, it works with any framework that already supports OpenAI.
LangChain
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(
openai_api_base="http://localhost:8080/langchain",
openai_api_key="sk-..."
)
LlamaIndex
from llama_index.llms import OpenAI
llm = OpenAI(
api_base="http://localhost:8080/openai",
api_key="sk-..."
)
LiteLLM
import litellm
response = litellm.completion(
model="gpt-4",
messages=[{"role": "user", "content": "Hello"}],
base_url="http://localhost:8080/litellm"
)
Anthropic SDK
import anthropic
client = anthropic.Anthropic(
base_url="http://localhost:8080/anthropic",
api_key="sk-ant-..."
)
Same pattern everywhere:
update the base URL, keep the rest of your code unchanged.
One Interface, Multiple Providers
Bifrost routes requests to multiple providers using the same API.
Configuration
{
"providers": [
{
"name": "openai",
"api_key": "sk-...",
"models": ["gpt-4", "gpt-4o-mini"]
},
{
"name": "anthropic",
"api_key": "sk-ant-...",
"models": ["claude-sonnet-4", "claude-opus-4"]
},
{
"name": "azure",
"api_key": "...",
"endpoint": "https://your-resource.openai.azure.com"
}
]
}
Application Code
# Routes to OpenAI
response = client.chat.completions.create(
model="gpt-4",
messages=[...]
)
# Routes to Anthropic
response = client.chat_completions.create(
model="anthropic/claude-sonnet-4",
messages=[...]
)
Switch providers by changing the model name.
No refactoring required.
Built-In Observability (No Instrumentation)
Bifrost ships with observability integrations out of the box.
Maxim AI
{
"plugins": [
{
"name": "maxim",
"config": {
"api_key": "your-maxim-key",
"repo_id": "your-repo-id"
}
}
]
}
Every request is automatically traced in the Maxim dashboard.
No instrumentation code needed.
Prometheus
{
"metrics": {
"enabled": true,
"port": 9090
}
}
Metrics are exposed at /metrics and can be scraped by Prometheus.
OpenTelemetry
{
"otel": {
"enabled": true,
"endpoint": "http://your-collector:4318"
}
}
Standard OTLP export to any OpenTelemetry-compatible collector.
Framework-Specific Integrations
Claude Code
{
"baseURL": "http://localhost:8080/openai",
"provider": "anthropic"
}
All Claude Code requests now flow through Bifrost, enabling cost tracking, token usage, and caching.
LibreChat
custom:
- name: "Bifrost"
apiKey: "dummy"
baseURL: "http://localhost:8080/v1"
models:
default: ["openai/gpt-4o"]
Universal model access across all configured providers.
MCP (Model Context Protocol) Support
Bifrost supports MCP for tool calling and shared context.
{
"mcp": {
"servers": [
{
"name": "filesystem",
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem"]
},
{
"name": "brave-search",
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-brave-search"],
"env": {
"BRAVE_API_KEY": "your-key"
}
}
]
}
}
Once configured, your LLM calls automatically gain access to MCP tools.
Deployment Options
Docker
docker run -p 8080:8080 \
-e OPENAI_API_KEY=sk-... \
maximhq/bifrost:latest
Docker Compose
services:
bifrost:
image: maximhq/bifrost:latest
ports:
- "8080:8080"
environment:
- OPENAI_API_KEY=sk-...
volumes:
- ./data:/app/data
Kubernetes
apiVersion: apps/v1
kind: Deployment
metadata:
name: bifrost
spec:
replicas: 3
template:
spec:
containers:
- name: bifrost
image: maximhq/bifrost:latest
ports:
- containerPort: 8080
Terraform examples are available in the documentation.
Real Integration Example
Before (Direct OpenAI)
No observability
No caching
No load balancing
No provider failover
After (Through Bifrost)
llm = ChatOpenAI(
model="gpt-4",
openai_api_base="http://localhost:8080/langchain"
)
Automatically enabled:
Observability
Semantic caching
Multi-key load balancing
Provider failover
One line changed. All features enabled.
Migration Checklist
- Run Bifrost
- Add provider API keys
- Update the base URL
- Test one request
- Deploy
Total migration time: ~10 minutes.
The Bottom Line
Bifrost integrates into existing LLM stacks in minutes:
- OpenAI-compatible API
- One URL change
- Multi-provider routing
- Built-in observability
No refactoring required
No new SDKs.
No code rewrites.
Just drop it in.
Built by the team at Maxim AI.


Top comments (0)