DEV Community

Piyush Chauhan
Piyush Chauhan

Posted on

Algorithmic Concepts in MongoDB Design

1. Sliding Window Concept

Application in MongoDB

// Sliding Window for Time-Series Data
db.userActivity.aggregate([
  // Sliding window for last 30 days of user engagement
  {
    $match: {
      timestamp: {
        $gte: new Date(Date.now() - 30 * 24 * 60 * 60 * 1000)
      }
    }
  },
  {
    $group: {
      _id: {
        // Group by day
        day: { $dateToString: { 
          format: "%Y-%m-%d", 
          date: "$timestamp" 
        }}
      },
      dailyActiveUsers: { $addToSet: "$userId" },
      totalEvents: { $sum: 1 }
    }
  },
  // Sliding window aggregation to track trends
  {
    $setWindowFields: {
      sortBy: { "_id.day": 1 },
      output: {
        movingAverageUsers: { 
          $avg: "$dailyActiveUsers.length", 
          window: {
            range: [-7, 0],
            unit: "day"
          }
        }
      }
    }
  }
])
Enter fullscreen mode Exit fullscreen mode

Key Benefits

  • Track rolling metrics
  • Analyze time-based trends
  • Efficient memory usage

2. Two-Pointer Technique

Schema Design Example

// Optimized Social Graph Schema
{
  _id: ObjectId("user1"),
  followers: [
    { 
      userId: ObjectId("user2"),
      followedAt: ISODate(),
      interaction: {
        // Two-pointer like tracking
        mutualFollows: Boolean,
        lastInteractionScore: Number
      }
    }
  ],
  following: [
    { 
      userId: ObjectId("user3"),
      followedAt: ISODate()
    }
  ]
}

// Efficient Friend Recommendation
function findPotentialConnections(userId) {
  return db.users.aggregate([
    { $match: { _id: userId } },
    // Expand followers and following
    { $project: {
        potentialConnections: {
          $setIntersection: [
            "$followers.userId", 
            "$following.userId"
          ]
        }
      }
    }
  ]);
}
Enter fullscreen mode Exit fullscreen mode

Optimization Techniques

  • Reduce computational complexity
  • Efficient relationship tracking
  • Minimize full collection scans

3. Dynamic Programming (DP) Approach

Caching and Memoization

// DP-Inspired Caching Strategy
{
  _id: "user_analytics_cache",
  userId: ObjectId("user1"),
  // Memoized computation results
  cachedMetrics: {
    last30DaysEngagement: {
      computedAt: ISODate(),
      totalViews: 1000,
      avgSessionDuration: 5.5
    },
    yearlyTrends: {
      // Cached computation results
      computedAt: ISODate(),
      metrics: { /* pre-computed data */ }
    }
  },
  // Invalidation timestamp
  lastUpdated: ISODate()
}

// DP-like Incremental Computation
function updateUserAnalytics(userId) {
  // Check if cached result is valid
  const cachedResult = db.analyticsCache.findOne({ userId });

  if (shouldRecompute(cachedResult)) {
    const newMetrics = computeComplexMetrics(userId);

    // Atomic update with incremental computation
    db.analyticsCache.updateOne(
      { userId },
      { 
        $set: {
          cachedMetrics: newMetrics,
          lastUpdated: new Date()
        }
      },
      { upsert: true }
    );
  }
}
Enter fullscreen mode Exit fullscreen mode

4. Greedy Approach in Indexing

Indexing Strategy

// Greedy Index Selection
db.products.createIndex(
  { 
    category: 1, 
    price: -1, 
    soldCount: -1 
  },
  {
    // Greedy optimization
    partialFilterExpression: {
      inStock: true,
      price: { $gt: 100 }
    }
  }
)

// Query Optimization Example
function greedyQueryOptimization(filters) {
  // Dynamically select best index
  const indexes = db.products.getIndexes();

  const bestIndex = indexes.reduce((best, current) => {
    // Greedy selection of most selective index
    const selectivityScore = computeIndexSelectivity(current, filters);
    return selectivityScore > best.selectivityScore 
      ? { index: current, selectivityScore }
      : best;
  }, { selectivityScore: -1 });

  return bestIndex.index;
}
Enter fullscreen mode Exit fullscreen mode

5. Heap/Priority Queue Concepts

Distributed Ranking System

// Priority Queue-like Document Structure
{
  _id: "global_leaderboard",
  topUsers: [
    // Maintained like a min-heap
    { 
      userId: ObjectId("user1"),
      score: 1000,
      lastUpdated: ISODate()
    },
    // Continuously maintained top K users
  ],
  updateStrategy: {
    maxSize: 100,
    evictionPolicy: "lowest_score"
  }
}

// Efficient Leaderboard Management
function updateLeaderboard(userId, newScore) {
  db.leaderboards.findOneAndUpdate(
    { _id: "global_leaderboard" },
    {
      $push: {
        topUsers: {
          $each: [{ userId, score: newScore }],
          $sort: { score: -1 },
          $slice: 100  // Maintain top 100
        }
      }
    }
  );
}
Enter fullscreen mode Exit fullscreen mode

6. Graph Algorithms Inspiration

Social Network Schema

// Graph-like User Connections
{
  _id: ObjectId("user1"),
  connections: [
    {
      userId: ObjectId("user2"),
      type: "friend",
      strength: 0.85,
      // Inspired by PageRank-like scoring
      connectionScore: {
        mutualFriends: 10,
        interactions: 25
      }
    }
  ]
}

// Connection Recommendation
function recommendConnections(userId) {
  return db.users.aggregate([
    { $match: { _id: userId } },
    // Graph traversal-like recommendation
    { $graphLookup: {
        from: "users",
        startWith: "$connections.userId",
        connectFromField: "connections.userId",
        connectToField: "_id",
        as: "potentialConnections",
        maxDepth: 2,
        restrictSearchWithMatch: {
          // Avoid already connected users
          _id: { $nin: existingConnections }
        }
      }
    }
  ]);
}
Enter fullscreen mode Exit fullscreen mode

Scalability Considerations

Key Principles

  1. Algorithmic Efficiency

    • Minimize collection scans
    • Use indexing strategically
    • Implement efficient aggregation
  2. Distributed Computing

    • Leverage sharding
    • Implement smart partitioning
    • Use aggregation pipeline for distributed computing
  3. Caching and Memoization

    • Cache complex computations
    • Use time-based invalidation
    • Implement incremental updates

Key Skills

  • Understand data access patterns
  • Know indexing strategies
  • Recognize query complexity
  • Think about horizontal scaling
πŸ‘‹ While you are here

Reinvent your career. Join DEV.

It takes one minute and is worth it for your career.

Get started

Top comments (0)

typescript

11 Tips That Make You a Better Typescript Programmer

1 Think in {Set}

Type is an everyday concept to programmers, but it’s surprisingly difficult to define it succinctly. I find it helpful to use Set as a conceptual model instead.

#2 Understand declared type and narrowed type

One extremely powerful typescript feature is automatic type narrowing based on control flow. This means a variable has two types associated with it at any specific point of code location: a declaration type and a narrowed type.

#3 Use discriminated union instead of optional fields

...

Read the whole post now!

πŸ‘‹ Kindness is contagious

Explore a sea of insights with this enlightening post, highly esteemed within the nurturing DEV Community. Coders of all stripes are invited to participate and contribute to our shared knowledge.

Expressing gratitude with a simple "thank you" can make a big impact. Leave your thanks in the comments!

On DEV, exchanging ideas smooths our way and strengthens our community bonds. Found this useful? A quick note of thanks to the author can mean a lot.

Okay