DEV Community

Cover image for Building a Document QA System with Supavec and Gaia
Harish Kotra (he/him) for Gaia

Posted on • Originally published at hackmd.io

Building a Document QA System with Supavec and Gaia

In this article, I'll share my experience building a document-aware chat system using Supavec and Gaia, complete with code examples and practical insights.

The Challenge

Every developer who has tried to build a document Q&A system knows the pain points:

  • Complex document processing pipelines
  • Managing chunking and embeddings
  • Implementing efficient vector search
  • Maintaining context across conversations
  • Handling multiple file formats

Why Gaia + Supavec?

The breakthrough came when I discovered the power of combining two specialized tools:

  • Supavec: Handles document processing infrastructure
  • Gaia: Provides advanced language understanding

Here's a comparison of the traditional approach versus using Supavec:

// Traditional approach - complex and error-prone
const processDocumentTraditional = async (file) => {
  const text = await extractText(file);
  const chunks = await splitIntoChunks(text);
  const embeddings = await generateEmbeddings(chunks);
  await storeInVectorDB(embeddings);
  // Plus hundreds of lines handling edge cases
};

// With Supavec - clean and efficient
const uploadDocument = async (file) => {
  const formData = new FormData();
  formData.append("file", file);
  const response = await fetch("https://api.supavec.com/upload_file", {
    method: "POST",
    headers: { authorization: apiKey },
    body: formData
  });
  return response.json();
};
Enter fullscreen mode Exit fullscreen mode

System Architecture

The system consists of four main components:

  1. Frontend (React)

    • File upload interface
    • Real-time chat UI
    • Document selection
    • Response rendering
  2. Backend (Express)

    • Request orchestration
    • File handling
    • API integration
  3. Supavec Integration

    • Document processing
    • Semantic search
    • Context retrieval
  4. Gaia Integration

    • Natural language understanding
    • Response generation
    • Context synthesis

Core Implementation

Here's the chat interface that brings it all together:

export function ChatInterface({ selectedFiles }) {
  const [messages, setMessages] = useState([]);

  const handleQuestion = async (question) => {
    try {
      // Get relevant context from documents
      const searchResponse = await searchEmbeddings(question, selectedFiles);
      const context = searchResponse.documents
        .map(doc => doc.content)
        .join('\n\n');

      // Generate response using context
      const answer = await askQuestion(question, context);

      setMessages(prev => [...prev,
        { role: 'user', content: question },
        { role: 'assistant', content: answer }
      ]);
    } catch (error) {
      console.error('Error processing question:', error);
    }
  };

  return (
    <div className="chat-container">
      <MessageList messages={messages} />
      <QuestionInput onSubmit={handleQuestion} />
    </div>
  );
}
Enter fullscreen mode Exit fullscreen mode

Why This Approach Works Better

1. Intelligent Context Retrieval

Instead of simple keyword matching, Supavec uses semantic search to find relevant document sections:

// Semantic search implementation
const getRelevantContext = async (question, fileIds) => {
  const response = await fetch('https://api.supavec.com/embeddings', {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json',
      authorization: apiKey
    },
    body: JSON.stringify({
      query: question,
      file_ids: fileIds,
      k: 3  // Number of relevant chunks to retrieve
    })
  });
  return response.json();
};
Enter fullscreen mode Exit fullscreen mode

2. Natural Response Generation

Gaia doesn't just stitch together document chunks - it understands and synthesizes information:

// Example response generation
const generateResponse = async (question, context) => {
  const response = await fetch('https://llama3b.gaia.domains/v1/chat/completions', {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json'
    },
    body: JSON.stringify({
      messages: [
        { role: 'system', content: 'You are a helpful assistant that answers questions based on provided context.' },
        { role: 'user', content: `Context: ${context}\n\nQuestion: ${question}` }
      ]
    })
  });
  return response.json();
};
Enter fullscreen mode Exit fullscreen mode

Getting Started

  1. Clone the repository:
git clone https://github.com/harishkotra/gaia-supavec.git
cd gaia-supavec
Enter fullscreen mode Exit fullscreen mode
  1. Install dependencies:
# Backend
cd backend
npm install

# Frontend
cd ../frontend
npm install
Enter fullscreen mode Exit fullscreen mode
  1. Configure environment variables:
# backend/.env
SUPAVEC_API_KEY=your_supavec_key
GAIA_API=https://llama3b.gaia.domains/v1/chat/completions
FRONTEND_URL=http://localhost:3000

# frontend/.env
REACT_APP_API_URL=http://localhost:3001
Enter fullscreen mode Exit fullscreen mode
  1. Start the development servers:
# Backend
cd backend
npm run dev

# Frontend
cd ../frontend
npm start
Enter fullscreen mode Exit fullscreen mode

Key Features

  1. Document Processing

    • PDF and text file support
    • Automatic chunking
    • Efficient indexing
  2. Search Capabilities

    • Semantic search
    • Multi-document queries
    • Relevance ranking
  3. User Interface

    • Real-time chat
    • File management
    • Response streaming
  4. Development Features

    • Hot reloading
    • Error handling
    • Request validation

Production Considerations

  1. Scaling

    • Implement caching
    • Add rate limiting
    • Configure monitoring
  2. Security

    • Input validation
    • File type restrictions
    • API key management
  3. Performance

    • Response streaming
    • Lazy loading
    • Request batching

Future Improvements

Enhanced Features

  • [ ] Conversation memory
  • [ ] More file formats
  • [ ] Batch processing

User Experience

  • [ ] Progress indicators
  • [ ] Error recovery
  • [ ] Mobile optimization

Developer Experience

  • [ ] Better documentation
  • [ ] Testing utilities
  • [ ] Deployment guides

Building a document QA system doesn't have to be complicated. By leveraging Supavec for document processing and Gaia for language understanding, we can create powerful, user-friendly systems without getting lost in implementation details. The complete code is available on GitHub, and I encourage you to try it out.

Resources


Found this helpful? Follow me on GitHub or star the repository to stay updated with new features and improvements.

Top comments (0)