In this article, I'll share my experience building a document-aware chat system using Supavec and Gaia, complete with code examples and practical insights.
The Challenge
Every developer who has tried to build a document Q&A system knows the pain points:
- Complex document processing pipelines
- Managing chunking and embeddings
- Implementing efficient vector search
- Maintaining context across conversations
- Handling multiple file formats
Why Gaia + Supavec?
The breakthrough came when I discovered the power of combining two specialized tools:
- Supavec: Handles document processing infrastructure
- Gaia: Provides advanced language understanding
Here's a comparison of the traditional approach versus using Supavec:
// Traditional approach - complex and error-prone
const processDocumentTraditional = async (file) => {
const text = await extractText(file);
const chunks = await splitIntoChunks(text);
const embeddings = await generateEmbeddings(chunks);
await storeInVectorDB(embeddings);
// Plus hundreds of lines handling edge cases
};
// With Supavec - clean and efficient
const uploadDocument = async (file) => {
const formData = new FormData();
formData.append("file", file);
const response = await fetch("https://api.supavec.com/upload_file", {
method: "POST",
headers: { authorization: apiKey },
body: formData
});
return response.json();
};
System Architecture
The system consists of four main components:
-
Frontend (React)
- File upload interface
- Real-time chat UI
- Document selection
- Response rendering
-
Backend (Express)
- Request orchestration
- File handling
- API integration
-
Supavec Integration
- Document processing
- Semantic search
- Context retrieval
-
Gaia Integration
- Natural language understanding
- Response generation
- Context synthesis
Core Implementation
Here's the chat interface that brings it all together:
export function ChatInterface({ selectedFiles }) {
const [messages, setMessages] = useState([]);
const handleQuestion = async (question) => {
try {
// Get relevant context from documents
const searchResponse = await searchEmbeddings(question, selectedFiles);
const context = searchResponse.documents
.map(doc => doc.content)
.join('\n\n');
// Generate response using context
const answer = await askQuestion(question, context);
setMessages(prev => [...prev,
{ role: 'user', content: question },
{ role: 'assistant', content: answer }
]);
} catch (error) {
console.error('Error processing question:', error);
}
};
return (
<div className="chat-container">
<MessageList messages={messages} />
<QuestionInput onSubmit={handleQuestion} />
</div>
);
}
Why This Approach Works Better
1. Intelligent Context Retrieval
Instead of simple keyword matching, Supavec uses semantic search to find relevant document sections:
// Semantic search implementation
const getRelevantContext = async (question, fileIds) => {
const response = await fetch('https://api.supavec.com/embeddings', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
authorization: apiKey
},
body: JSON.stringify({
query: question,
file_ids: fileIds,
k: 3 // Number of relevant chunks to retrieve
})
});
return response.json();
};
2. Natural Response Generation
Gaia doesn't just stitch together document chunks - it understands and synthesizes information:
// Example response generation
const generateResponse = async (question, context) => {
const response = await fetch('https://llama3b.gaia.domains/v1/chat/completions', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
messages: [
{ role: 'system', content: 'You are a helpful assistant that answers questions based on provided context.' },
{ role: 'user', content: `Context: ${context}\n\nQuestion: ${question}` }
]
})
});
return response.json();
};
Getting Started
- Clone the repository:
git clone https://github.com/harishkotra/gaia-supavec.git
cd gaia-supavec
- Install dependencies:
# Backend
cd backend
npm install
# Frontend
cd ../frontend
npm install
- Configure environment variables:
# backend/.env
SUPAVEC_API_KEY=your_supavec_key
GAIA_API=https://llama3b.gaia.domains/v1/chat/completions
FRONTEND_URL=http://localhost:3000
# frontend/.env
REACT_APP_API_URL=http://localhost:3001
- Start the development servers:
# Backend
cd backend
npm run dev
# Frontend
cd ../frontend
npm start
Key Features
-
Document Processing
- PDF and text file support
- Automatic chunking
- Efficient indexing
-
Search Capabilities
- Semantic search
- Multi-document queries
- Relevance ranking
-
User Interface
- Real-time chat
- File management
- Response streaming
-
Development Features
- Hot reloading
- Error handling
- Request validation
Production Considerations
-
Scaling
- Implement caching
- Add rate limiting
- Configure monitoring
-
Security
- Input validation
- File type restrictions
- API key management
-
Performance
- Response streaming
- Lazy loading
- Request batching
Future Improvements
Enhanced Features
- [ ] Conversation memory
- [ ] More file formats
- [ ] Batch processing
User Experience
- [ ] Progress indicators
- [ ] Error recovery
- [ ] Mobile optimization
Developer Experience
- [ ] Better documentation
- [ ] Testing utilities
- [ ] Deployment guides
Building a document QA system doesn't have to be complicated. By leveraging Supavec for document processing and Gaia for language understanding, we can create powerful, user-friendly systems without getting lost in implementation details. The complete code is available on GitHub, and I encourage you to try it out.
Resources
Found this helpful? Follow me on GitHub or star the repository to stay updated with new features and improvements.
Top comments (0)