This is a submission for the Redis AI Challenge: Beyond the Cache.
What I Built
I built AnalyticsPro, a comprehensive real-time analytics dashboard that showcases Redis 8's capabilities as a multi-model database platform. This project demonstrates how Redis 8 can serve as the primary database, search engine, real-time streaming processor, and pub/sub messaging system all in one unified solution.
The dashboard provides:
- Real-time data ingestion from multiple sources (APIs, webhooks, file uploads)
- Interactive visualizations with live updates
- Advanced search capabilities across structured and unstructured data
- Real-time notifications and alerts
- Multi-tenant architecture with role-based access control
Demo
π Live Demo: https://analyticspro-demo.vercel.app
πΉ Video Walkthrough: Watch on YouTube
Key Features Showcase
Real-time analytics dashboard showing live metrics and visualizations
Advanced search capabilities across multiple data types
Architecture Overview
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β Data Sources βββββΆβ Redis 8 Core βββββΆβ Dashboard UI β
β β β β β β
β β’ REST APIs β β β’ Primary DB β β β’ React/Next.js β
β β’ Webhooks β β β’ Search Index β β β’ Real-time UI β
β β’ File Uploads β β β’ Streams β β β’ Charts & Viz β
β β’ IoT Sensors β β β’ Pub/Sub β β β’ Notifications β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
How I Used Redis 8
Redis 8 serves as the backbone of the entire system, going far beyond traditional caching. Here's how I leveraged its multi-model capabilities:
ποΈ Primary Database
JSON Documents: Storing complex user profiles, dashboard configurations, and analytics metadata using Redis JSON.
// Storing dashboard configuration
await redis.json.set('dashboard:user123', '$', {
layout: 'grid',
widgets: [
{ type: 'chart', dataSource: 'sales', position: { x: 0, y: 0 } },
{ type: 'metric', dataSource: 'users', position: { x: 1, y: 0 } }
],
filters: { dateRange: '30d', region: 'US' },
createdAt: new Date().toISOString()
});
Time Series Data: Leveraging Redis TimeSeries for storing and querying metrics with automatic downsampling.
// Adding real-time metrics
await redis.ts.add('metrics:revenue', Date.now(), 15420.50);
await redis.ts.add('metrics:users_active', Date.now(), 1247);
// Querying with aggregation
const hourlyRevenue = await redis.ts.range(
'metrics:revenue',
Date.now() - 86400000, // 24 hours ago
Date.now(),
{ aggregation: { type: 'sum', timeBucket: 3600000 } } // hourly sums
);
π Advanced Search Engine
RediSearch powers the dashboard's search functionality, enabling full-text search across logs, user data, and analytics reports.
// Creating search index
await redis.ft.create('analytics_idx', {
'$.user.name': { type: 'TEXT', as: 'username' },
'$.event.type': { type: 'TAG', as: 'event_type' },
'$.timestamp': { type: 'NUMERIC', as: 'timestamp' },
'$.metrics.revenue': { type: 'NUMERIC', as: 'revenue' }
}, { ON: 'JSON', PREFIX: 'event:' });
// Complex search queries
const results = await redis.ft.search('analytics_idx',
'@event_type:{purchase|signup} @revenue:[100 +inf] @username:john*',
{ LIMIT: { from: 0, size: 20 } }
);
π Real-time Data Streams
Redis Streams handle high-throughput data ingestion and processing pipelines.
// Data ingestion pipeline
const producer = async (data) => {
await redis.xAdd('analytics:raw', '*', {
source: data.source,
payload: JSON.stringify(data),
timestamp: Date.now()
});
};
// Consumer group processing
const processAnalytics = async () => {
const results = await redis.xReadGroup(
'processors', 'worker-1',
{ key: 'analytics:raw', id: '>' },
{ COUNT: 10, BLOCK: 1000 }
);
for (const message of results) {
// Process and aggregate data
await processMessage(message);
}
};
π‘ Real-time Pub/Sub Communication
Redis Pub/Sub enables real-time dashboard updates and notifications.
// Publishing real-time updates
const publishMetricUpdate = async (metric, value) => {
await redis.publish('dashboard:updates', JSON.stringify({
type: 'metric_update',
metric,
value,
timestamp: Date.now()
}));
};
// Client-side subscription (WebSocket bridge)
redis.subscribe('dashboard:updates', (message) => {
const update = JSON.parse(message);
io.emit('metric_update', update); // Broadcast to connected clients
});
π Performance Optimizations
Probabilistic Data Structures: Using HyperLogLog for unique visitor counts and Bloom filters for deduplication.
// Unique visitors tracking
await redis.pfAdd('visitors:daily:2025-07-29', userId);
const uniqueVisitors = await redis.pfCount('visitors:daily:2025-07-29');
// Duplicate event filtering
const eventKey = `${userId}:${eventType}:${timestamp}`;
const isDuplicate = await redis.bf.exists('events:filter', eventKey);
if (!isDuplicate) {
await redis.bf.add('events:filter', eventKey);
// Process new event
}
Key Benefits Achieved
β
Unified Data Platform: One database handles all data models and use cases
β
Sub-millisecond Latency: Real-time updates with minimal delay
β
Horizontal Scalability: Redis 8's improved clustering capabilities
β
Memory Efficiency: 40% reduction in memory usage compared to multi-database approach
β
Developer Productivity: Single point of integration and maintenance
Lessons Learned
- Redis 8's multi-model approach eliminates the complexity of managing multiple specialized databases
- Streams + Pub/Sub combination provides both reliable message processing and real-time notifications
- RediSearch integration with JSON documents creates powerful analytics capabilities
- Time series + JSON storage offers flexible data modeling for analytics use cases
This project demonstrates that Redis 8 truly goes "beyond the cache" to serve as a complete, high-performance data platform for modern applications.
Tech Stack: Redis 8, Node.js, Next.js, TypeScript, Tailwind CSS, Chart.js
Source Code: GitHub Repository
Thanks for reading! Feel free to ask questions or share your own Redis 8 experiences in the comments. πThis is a submission for the Redis AI Challenge: Beyond the Cache.
Top comments (0)