*Memos:
- My post explains sub().
- My post explains mul().
- My post explains div().
- My post explains remainder().
- My post explains fmod().
add() can do addition with two of the 0D or more D tensors of zero or more elements or scalars or the 0D or more D tensor of zero or more elements and a scalar as shown below:
*Memos:
-
add()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
(Type:tensor
orscalar
ofint
,float
,complex
orbool
) or using a tensor(Type:tensor
ofint
,float
,complex
orbool
)(Required). - The 2nd argument with
torch
or the 1st argument with a tensor isother
(Required-Type:tensor
orscalar
ofint
,float
,complex
orbool
). - The 3rd argument with
torch
or the 2nd argument with a tensor isalpha
(Optional-Default:1
-Type:tensor
orscalar
ofint
,float
,complex
orbool
). *other
is multiplied byalpha
(input
or a tensor+(other
xalpha
)). - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
import torch
tensor1 = torch.tensor([9, 7, 6])
tensor2 = torch.tensor([[4, -4, 3], [-2, 5, -5]])
torch.add(input=tensor1, other=tensor2)
tensor1.add(other=tensor2)
torch.add(input=tensor1, other=tensor2, alpha=1)
torch.add(input=tensor1, other=tensor2, alpha=torch.tensor(1))
# tensor([[13, 3, 9], [7, 12, 1]])
torch.add(input=tensor1, other=tensor2, alpha=0)
torch.add(input=tensor1, other=tensor2, alpha=torch.tensor(0))
# tensor([[9, 7, 6], [9, 7, 6]])
torch.add(input=tensor1, other=tensor2, alpha=2)
torch.add(input=tensor1, other=tensor2, alpha=torch.tensor(2))
# tensor([[17, -1, 12], [5, 17, -4]])
torch.add(input=tensor1, other=tensor2, alpha=-1)
torch.add(input=tensor1, other=tensor2, alpha=torch.tensor(-1))
# tensor([[5, 11, 3], [11, 2, 11]])
torch.add(input=tensor1, other=tensor2, alpha=-2)
torch.add(input=tensor1, other=tensor2, alpha=torch.tensor(-2))
# tensor([[1, 15, 0], [13, -3, 16]])
torch.add(input=9, other=tensor2)
torch.add(input=9, other=tensor2, alpha=1)
torch.add(input=9, other=tensor2, alpha=torch.tensor(1))
# tensor([[13, 5, 12], [7, 14, 4]])
torch.add(input=tensor1, other=4)
torch.add(input=tensor1, other=4, alpha=1)
torch.add(input=tensor1, other=4, alpha=torch.tensor(1))
# tensor([13, 11, 10])
torch.add(input=9, other=4)
torch.add(input=9, other=4, alpha=1)
torch.add(input=9, other=4, alpha=torch.tensor(1))
# tensor(13)
tensor1 = torch.tensor([9., 7., 6.])
tensor2 = torch.tensor([[4., -4., 3.], [-2., 5., -5.]])
torch.add(input=tensor1, other=tensor2)
torch.add(input=tensor1, other=tensor2, alpha=1.)
torch.add(input=tensor1, other=tensor2, alpha=torch.tensor(1.))
# tensor([[13., 3., 9.], [7., 12., 1.]])
torch.add(input=9., other=tensor2)
torch.add(input=9., other=tensor2, alpha=1.)
torch.add(input=9., other=tensor2, alpha=torch.tensor(1.))
# tensor([[13., 5., 12.], [7., 14., 4.]])
torch.add(input=tensor1, other=4.)
torch.add(input=tensor1, other=4., alpha=1.)
torch.add(input=tensor1, other=4., alpha=torch.tensor(1.))
# tensor([13., 11., 10.])
torch.add(input=9., other=4.)
torch.add(input=9., other=4., alpha=1.)
torch.add(input=9., other=4., alpha=torch.tensor(1.))
# tensor(13.)
tensor1 = torch.tensor([9.+0.j, 7.+0.j, 6.+0.j])
tensor2 = torch.tensor([[4.+0.j, -4.+0.j, 3.+0.j],
[-2.+0.j, 5.+0.j, -5.+0.j]])
torch.add(input=tensor1, other=tensor2)
torch.add(input=tensor1, other=tensor2, alpha=1.+0.j)
torch.add(input=tensor1, other=tensor2, alpha=torch.tensor(1.+0.j))
# tensor([[13.+0.j, 3.+0.j, 9.+0.j],
# [7.+0.j, 12.+0.j, 1.+0.j]])
torch.add(input=9.+0.j, other=tensor2)
torch.add(input=9.+0.j, other=tensor2, alpha=1.+0.j)
torch.add(input=9.+0.j, other=tensor2, alpha=torch.tensor(1.+0.j))
# tensor([[13.+0.j, 5.+0.j, 12.+0.j],
# [7.+0.j, 14.+0.j, 4.+0.j]])
torch.add(input=tensor1, other=4.+0.j)
torch.add(input=tensor1, other=4.+0.j, alpha=1.+0.j)
torch.add(input=tensor1, other=4.+0.j, alpha=torch.tensor(1.+0.j))
# tensor([13.+0.j, 11.+0.j, 10.+0.j])
torch.add(input=9.+0.j, other=4.+0.j)
torch.add(input=9.+0.j, other=4.+0.j, alpha=1.+0.j)
torch.add(input=9.+0.j, other=4.+0.j, alpha=torch.tensor(1.+0.j))
# tensor(13.+0.j)
tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[False, True, False], [True, False, True]])
torch.add(input=tensor1, other=tensor2)
torch.add(input=tensor1, other=tensor2, alpha=True)
torch.add(input=tensor1, other=tensor2, alpha=torch.tensor(True))
# tensor([[True, True, True], [True, False, True]])
torch.add(input=True, other=tensor2)
torch.add(input=True, other=tensor2, alpha=True)
torch.add(input=True, other=tensor2, alpha=torch.tensor(True))
# tensor([[True, True, True], [True, True, True]])
torch.add(input=tensor1, other=False)
torch.add(input=tensor1, other=False, alpha=True)
torch.add(input=tensor1, other=False, alpha=torch.tensor(True))
# tensor([True, False, True])
torch.add(input=True, other=False)
torch.add(input=True, other=False, alpha=True)
torch.add(input=True, other=False, alpha=torch.tensor(True))
# tensor(True)
Top comments (0)