DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

all in PyTorch

Buy Me a Coffee

*My post explains any().

all() can check if all the elements of a 0D or more D tensor are True, getting the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • all() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is dim(Optional-Type:int, tuple of int or list of int).
  • The 3rd argument with torch or the 2nd argument with a tensor is keepdim(Optional-Default:False-Type:bool). *My post explains keepdim argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • An empty tensor returns a True of a 1D or more D tensor or an empty 1D or more D tensor.
import torch

my_tensor = torch.tensor(True)

torch.all(input=my_tensor)
my_tensor.all()
torch.all(input=my_tensor, dim=0)
torch.all(input=my_tensor, dim=-1)
torch.all(input=my_tensor, dim=(0,))
torch.all(input=my_tensor, dim=(-1,))
# tensor(True)

my_tensor = torch.tensor([True, False, True, False])

torch.all(input=my_tensor)
torch.all(input=my_tensor, dim=0)
torch.all(input=my_tensor, dim=-1)
torch.all(input=my_tensor, dim=(0,))
torch.all(input=my_tensor, dim=(-1,))
# tensor(False)

my_tensor = torch.tensor([[True, False, True, False],
                          [True, False, True, False]])
torch.all(input=my_tensor)
torch.all(input=my_tensor, dim=(0, 1))
torch.all(input=my_tensor, dim=(0, -1))
torch.all(input=my_tensor, dim=(1, 0))
torch.all(input=my_tensor, dim=(1, -2))
torch.all(input=my_tensor, dim=(-1, 0))
torch.all(input=my_tensor, dim=(-1, -2))
torch.all(input=my_tensor, dim=(-2, 1))
torch.all(input=my_tensor, dim=(-2, -1))
# tensor(False)

torch.all(input=my_tensor, dim=0)
torch.all(input=my_tensor, dim=(0,))
torch.all(input=my_tensor, dim=-2)
# tensor([True, False, True, False])

torch.all(input=my_tensor, dim=1)
torch.all(input=my_tensor, dim=-1)
torch.all(input=my_tensor, dim=(-1,))
# tensor([False, False])

my_tensor = torch.tensor([[0, 1, 2, 3],
                          [4, 5, 6, 7]])
torch.all(input=my_tensor)
# tensor(False)

my_tensor = torch.tensor([[0., 1., 2., 3.],
                          [4., 5., 6., 7.]])
torch.all(input=my_tensor)
# tensor(False)

my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
                          [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j]])
torch.all(input=my_tensor)
# tensor(False)

my_tensor = torch.tensor([[]])

torch.all(input=my_tensor)
# tensor(True)

torch.all(input=my_tensor, dim=0)
torch.all(input=my_tensor, dim=-2)
# tensor([], dtype=torch.bool)

torch.all(input=my_tensor, dim=1)
torch.all(input=my_tensor, dim=-1)
# tensor([True])
Enter fullscreen mode Exit fullscreen mode

Heroku

This site is built on Heroku

Join the ranks of developers at Salesforce, Airbase, DEV, and more who deploy their mission critical applications on Heroku. Sign up today and launch your first app!

Get Started

Top comments (0)

Heroku

Build apps, not infrastructure.

Dealing with servers, hardware, and infrastructure can take up your valuable time. Discover the benefits of Heroku, the PaaS of choice for developers since 2007.

Visit Site

👋 Kindness is contagious

Dive into an ocean of knowledge with this thought-provoking post, revered deeply within the supportive DEV Community. Developers of all levels are welcome to join and enhance our collective intelligence.

Saying a simple "thank you" can brighten someone's day. Share your gratitude in the comments below!

On DEV, sharing ideas eases our path and fortifies our community connections. Found this helpful? Sending a quick thanks to the author can be profoundly valued.

Okay