DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

any in PyTorch

Buy Me a Coffee

*My post explains all().

any() can check if any elements of a 0D or more D tensor are True, getting the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • any() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is dim(Optional-Type:int, tuple of int or list of int).
  • The 3rd argument with torch or the 2nd argument with a tensor is keepdim(Optional-Default:False-Type:bool). *My post explains keepdim argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • An empty tensor returns a False of a 1D or more D tensor or an empty 1D or more D tensor.
import torch

my_tensor = torch.tensor(True)

torch.any(input=my_tensor)
my_tensor.any()
torch.any(input=my_tensor, dim=0)
torch.any(input=my_tensor, dim=-1)
torch.any(input=my_tensor, dim=(0,))
torch.any(input=my_tensor, dim=(-1,))
# tensor(True)

torch.any(input=my_tensor, dim=0, keepdim=True)
# tensor(True)

my_tensor = torch.tensor([True, False, True, False])

torch.any(input=my_tensor)
torch.any(input=my_tensor, dim=0)
torch.any(input=my_tensor, dim=-1)
torch.any(input=my_tensor, dim=(0,))
torch.any(input=my_tensor, dim=(-1,))
# tensor(True)

torch.any(input=my_tensor, dim=0, keepdim=True)
# tensor([True])

my_tensor = torch.tensor([[True, False, True, False],
                          [True, False, True, False]])
torch.any(input=my_tensor)
torch.any(input=my_tensor, dim=(0, 1))
torch.any(input=my_tensor, dim=(0, -1))
torch.any(input=my_tensor, dim=(1, 0))
torch.any(input=my_tensor, dim=(1, -2))
torch.any(input=my_tensor, dim=(-1, 0))
torch.any(input=my_tensor, dim=(-1, -2))
torch.any(input=my_tensor, dim=(-2, 1))
torch.any(input=my_tensor, dim=(-2, -1))
# tensor(True)

torch.any(input=my_tensor, dim=0)
torch.any(input=my_tensor, dim=(0,))
torch.any(input=my_tensor, dim=-2)
# tensor([True, False, True, False])

torch.any(input=my_tensor, dim=1)
torch.any(input=my_tensor, dim=-1)
torch.any(input=my_tensor, dim=(-1,))
# tensor([True, True])

torch.any(input=my_tensor, dim=0, keepdim=True)
# tensor([[True, False, True, False]])

my_tensor = torch.tensor([[0, 1, 2, 3],
                          [4, 5, 6, 7]])
torch.any(input=my_tensor)
# tensor(True)

my_tensor = torch.tensor([[0., 1., 2., 3.],
                          [4., 5., 6., 7.]])
torch.any(input=my_tensor)
# tensor(True)

my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j],
                          [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j]])
torch.any(input=my_tensor)
# tensor(True)

my_tensor = torch.tensor([[]])

torch.any(input=my_tensor)
# tensor(False)

torch.any(input=my_tensor, dim=0)
torch.any(input=my_tensor, dim=-2)
# tensor([], dtype=torch.bool)

torch.any(input=my_tensor, dim=1)
torch.any(input=my_tensor, dim=-1)
# tensor([False])
Enter fullscreen mode Exit fullscreen mode

Sentry image

Hands-on debugging session: instrument, monitor, and fix

Join Lazar for a hands-on session where you’ll build it, break it, debug it, and fix it. You’ll set up Sentry, track errors, use Session Replay and Tracing, and leverage some good ol’ AI to find and fix issues fast.

RSVP here →

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay