*Memos:
- My post explains atleast_2d().
- My post explains atleast_3d().
atleast_1d() can get the view of the one or more 1D or more D tensors of zero or more elements by only changing one or more 0D tensors to one or more 1D tensors from the one or more 0D or more D tensors of zero or more elements as shown below:
*Memos:
-
atleast_1d()
can be used with torch but not with a tensor. - The 1st or more arguments with
torch
are*tensors
(Required-Type:tensor
ofint
,float
,complex
orbool
ortuple
or list oftensor
ofint
,float
,complex
orbool
): *Memos:- If setting more than one tensors, a tuple of tensors is returned otherwise a tensor is returned.
- Don't use any keyword like
*tensors=
,tensor
orinput
.
- Setting no arguments returns an empty tuple.
import torch
tensor0 = torch.tensor(2) # 0D tensor
torch.atleast_1d(tensor0)
# tensor([2])
tensor0 = torch.tensor(2) # 0D tensor
tensor1 = torch.tensor([2, 7, 4]) # 1D tensor
tensor2 = torch.tensor([[2, 7, 4], [8, 3, 2]]) # 2D tensor
tensor3 = torch.tensor([[[2, 7, 4], [8, 3, 2]], # 3D tensor
[[5, 0, 8], [3, 6, 1]]])
tensor4 = torch.tensor([[[[2, 7, 4], [8, 3, 2]], # 4D tensor
[[5, 0, 8], [3, 6, 1]]],
[[[9, 4, 7], [1, 0, 5]],
[[6, 7, 4], [2, 1, 9]]]])
torch.atleast_1d(tensor0, tensor1, tensor2, tensor3, tensor4)
torch.atleast_1d((tensor0, tensor1, tensor2, tensor3, tensor4))
# (tensor([2]),
# tensor([2, 7, 4]),
# tensor([[2, 7, 4], [8, 3, 2]]),
# tensor([[[2, 7, 4], [8, 3, 2]],
# [[5, 0, 8], [3, 6, 1]]]),
# tensor([[[[2, 7, 4], [8, 3, 2]],
# [[5, 0, 8], [3, 6, 1]]],
# [[[9, 4, 7], [1, 0, 5]],
# [[6, 7, 4], [2, 1, 9]]]]))
tensor0 = torch.tensor(2) # 0D tensor
tensor1 = torch.tensor([2, 7, 4]) # 1D tensor
tensor2 = torch.tensor([[2., 7., 4.], # 2D tensor
[8., 3., 2.]])
tensor3 = torch.tensor([[[2.+0.j, 7.+0.j, 4.+0.j], # 3D tensor
[8.+0.j, 3.+0.j, 2.+0.j]],
[[5.+0.j, 0.+0.j, 8.+0.j],
[3.+0.j, 6.+0.j, 1.+0.j]]])
tensor4 = torch.tensor([[[[True, False, True], [False, True, False]],
[[True, False, True], [False, True, False]]],
[[[True, False, True], [False, True, False]],
[[True, False, True], [False, True, False]]]])
# 4D tensor
torch.atleast_1d(tensor0, tensor1, tensor2, tensor3, tensor4)
# (tensor([2]),
# tensor([2, 7, 4]),
# tensor([[2., 7., 4.],
# [8., 3., 2.]]),
# tensor([[[2.+0.j, 7.+0.j, 4.+0.j],
# [8.+0.j, 3.+0.j, 2.+0.j]],
# [[5.+0.j, 0.+0.j, 8.+0.j],
# [3.+0.j, 6.+0.j, 1.+0.j]]]),
# tensor([[[[True, False, True], [False, True, False]],
# [[True, False, True], [False, True, False]]],
# [[[True, False, True], [False, True, False]],
# [[True, False, True], [False, True, False]]]]))
torch.atleast_1d()
# ()
Top comments (0)