Azure Functions is a serverless computing service provided by Microsoft Azure, enabling developers to run event-driven code without worrying about server management. In this article, we’ll walk through how to deploy Azure Functions using Python.
Prerequisites
Before we start, ensure you have the following:
1. An Azure account.
2. Azure CLI installed. If it is not installed, follow these steps to set it up:
For Windows: Download and install the MSI installer from here.
For macOS: Use Homebrew to install it:
brew update && brew install azure-cli
- For Linux: Use your package manager to install Azure CLI. For example:
curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash
For detailed installation steps, refer to the official documentation here.
3. Python (3.9 or later).
4. Visual Studio Code or any preferred IDE.
5. The Azure Functions Core Tools installed. You can install it via npm:
npm install -g azure-functions-core-tools@4 --unsafe-perm true
Step 1: Create an Azure Function App Locally
1. Open your terminal and create a new directory for your project:
mkdir azure-functions-python
cd azure-functions-python
2. Initialize a new Azure Functions project:
func init . --python
This sets up the necessary project structure and files for Python.
3. Create a new function:
func new
Select a template (e.g., HTTP trigger), specify the 'authLevel' parameter (e.g., 'anonymous' for public access, or 'function' or 'admin' for restricted access), and give your function a name.
Step 2: Test Locally
1. Run the Azure Function locally:
func start
2. Open a browser and test the function using the URL provided in the terminal output. Modify the function to return a simple "Hello, World!" message by editing the function’s main Python file (function_app.py
) and updating it as follows:
import azure.functions as func
import datetime
import json
import logging
app = func.FunctionApp()
@app.route(route="http_trigger", auth_level=func.AuthLevel.ANONYMOUS)
def http_trigger(req: func.HttpRequest) -> func.HttpResponse:
logging.info('Python HTTP trigger function processed a request.')
return func.HttpResponse("Hello, World!", status_code=200)
3. Save the file and re-run the function locally to see the updated output.
func start
Step 3: Prepare for Deployment
1. Log in to your Azure account:
az login
2. Create a new resource group (optional, you can create a new one or use an existing one):
To create a new resource group:
az group create --name MyResourceGroup --location eastus
or list existing resource groups:
az group list --output table
To select an existing resource group, use its name directly in subsequent commands, such as in the --resource-group
parameter of Azure CLI commands.
3. Create a storage account: To create a new storage account (required for Azure Functions):
az storage account create --name mystorageaccount --location eastus --resource-group MyResourceGroup --sku Standard_LRS
Alternatively, you can select an existing storage account by referencing its name in the next command.
4. Create a function app:
az functionapp create --resource-group MyResourceGroup --consumption-plan-location eastus --os-type Linux --runtime python --runtime-version 3.9 --functions-version 4 --name MyFunctionApp --storage-account mystorageaccount
Step 4: Deploy to Azure
1. Deploy your function app using the Azure CLI:
func azure functionapp publish MyFunctionApp
2. After deployment, note the URL provided in the output to test your deployed function.
Step 5: Test Your Deployed Function
1. Open a browser or use a tool like Postman to test your function with the deployed URL.
2. Confirm that it works as expected.
Top comments (0)