DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

AugMix in PyTorch (1)

Buy Me a Coffee

*Memos:

AugMix() can randomly do AugMix to an image as shown below. *It's about no arguments and full argument:

*Memos:

  • The 1st argument for initialization is severity(Optional-Default:3-Type:int). *It must be 1 <= x <= 10.
  • The 2nd argument for initialization is mixture_width(Optional-Default:3-Type:int).
  • The 3rd argument for initialization is chain_depth(Optional-Default:-1-Type:int). *If it's x <= 0, it's randomly taken from the interval [1, 3].
  • The 4th argument for initialization is alpha(Optional-Default:1.0-Type:float). *It must be 1 <= x.
  • The 5th argument for initialization is all_ops(Optional-Default:True-Type:bool). *It must be 1 <= x.
  • The 6th argument for initialization is interpolation(Optional-Default:InterpolationMode.NEAREST-Type:InterpolationMode). *If the input is a tensor, only InterpolationMode.NEAREST and InterpolationMode.BILINEAR can be set to it.
  • The 7th argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)): *Memos:
    • It can change the background of an image. *The background can be seen when doing AugMix to an image.
    • A tuple/list must be the 1D with 1 or 3 elements.
    • If all values are x <= 0, it's black.
    • If all values are 255 <= x, it's white.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AugMix
from torchvision.transforms.functional import InterpolationMode

am = AugMix()
am = AugMix(severity=3, mixture_width=3, chain_depth=-1, alpha=1.0, 
            all_ops=True, interpolation=InterpolationMode.BILINEAR,
            fill=None)
am
# AugMix(interpolation=InterpolationMode.BILINEAR, severity=3,
#        mixture_width=3, chain_depth=-1, alpha=1.0, all_ops=True)

am.severity
# 3

am.mixture_width
# 3

am.chain_depth
# -1

am.alpha
# 1.0

am.all_ops
# True

am.interpolation
# <InterpolationMode.BILINEAR: 'bilinear'>

print(am.fill)
# None

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

noargs_data = OxfordIIITPet( # `noargs` is no arguments.
    root="data",
    transform=AugMix()
)

aoFalse_data = OxfordIIITPet( # `ao` is all_ops.
    root="data",
    transform=AugMix(all_ops=False)
    # transform=AugMix(severity=3, mixture_width=3, chain_depth=-1, 
    #                  alpha=1.0, all_ops=True,
    #                  interpolation=InterpolationMode.BILINEAR,
    #                  fill=None)
)

s10cd25fgray_data = OxfordIIITPet( # `s` is severity and `cd` is chain_depth.
    root="data",                   # `f` is fill.
    transform=AugMix(severity=10, chain_depth=25, fill=150)
)

s10cd25fpurple_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, chain_depth=25, fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=noargs_data, main_title="noargs_data")
show_images1(data=noargs_data, main_title="noargs_data")
show_images1(data=noargs_data, main_title="noargs_data")
show_images1(data=noargs_data, main_title="noargs_data")
show_images1(data=noargs_data, main_title="noargs_data")
show_images1(data=noargs_data, main_title="noargs_data")
show_images1(data=noargs_data, main_title="noargs_data")
show_images1(data=noargs_data, main_title="noargs_data")
show_images1(data=noargs_data, main_title="noargs_data")
show_images1(data=noargs_data, main_title="noargs_data")
print()
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
show_images1(data=aoFalse_data, main_title="aoFalse_data")
print()
show_images1(data=s10cd25fgray_data, main_title="s10cd25fgray_data")
show_images1(data=s10cd25fpurple_data, main_title="s10cd25fpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0,
                 ao=True, ip=InterpolationMode.BILINEAR, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            am = AugMix(severity=s, mixture_width=mw, chain_depth=cd,
                        alpha=a, all_ops=ao, interpolation=ip, fill=f)
            plt.imshow(X=am(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="noargs_data")
show_images2(data=origin_data, main_title="noargs_data")
show_images2(data=origin_data, main_title="noargs_data")
show_images2(data=origin_data, main_title="noargs_data")
show_images2(data=origin_data, main_title="noargs_data")
show_images2(data=origin_data, main_title="noargs_data")
show_images2(data=origin_data, main_title="noargs_data")
show_images2(data=origin_data, main_title="noargs_data")
show_images2(data=origin_data, main_title="noargs_data")
show_images2(data=origin_data, main_title="noargs_data")
print()
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
show_images2(data=origin_data, main_title="aoFalse_data", ao=False)
print()
show_images2(data=origin_data, main_title="s10cd25fgray_data", s=10, cd=25,
             f=150)
show_images2(data=origin_data, main_title="s10cd25fpurple_data", s=10, 
             cd=25, f=[160, 32, 240])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more

Top comments (0)

AWS Q Developer image

Your AI Code Assistant

Automate your code reviews. Catch bugs before your coworkers. Fix security issues in your code. Built to handle large projects, Amazon Q Developer works alongside you from idea to production code.

Get started free in your IDE

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay