DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

AugMix in PyTorch (3)

Buy Me a Coffee

*Memos:

AugMix() can randomly do AugMix to an image as shown below. *It's about severity argument (2):

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AugMix
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s1a50_data = OxfordIIITPet( # `s` is severity and `a` is alpha.
    root="data",
    transform=AugMix(severity=1, alpha=50.0)
)

s2a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=2, alpha=50.0)
)

s3a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=3, alpha=50.0)
)

s4a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=4, alpha=50.0)
)

s5a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=5, alpha=50.0)
)

s6a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=6, alpha=50.0)
)

s7a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=7, alpha=50.0)
)

s8a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=8, alpha=50.0)
)

s9a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=9, alpha=50.0)
)

s10a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, alpha=50.0)
)

s1mw50cd50a50_data = OxfordIIITPet( # `mw` is mixture_width.
    root="data",                    # `cd` is chain_depth.
    transform=AugMix(severity=1, mixture_width=50, chain_depth=50,
                     alpha=50.0)
)

s2mw50cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=2, mixture_width=50, chain_depth=50,
                     alpha=50.0)
)

s3mw50cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=3, mixture_width=50, chain_depth=50,
                     alpha=50.0)
)

s4mw50cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=4, mixture_width=50, chain_depth=50,
                     alpha=50.0)
)

s5mw50cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=5, mixture_width=50, chain_depth=50,
                     alpha=50.0)
)

s6mw50cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=6, mixture_width=50, chain_depth=50,
                     alpha=50.0)
)

s7mw50cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=7, mixture_width=50, chain_depth=50,
                     alpha=50.0)
)

s8mw50cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=8, mixture_width=50, chain_depth=50,
                     alpha=50.0)
)

s9mw50cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=9, mixture_width=50, chain_depth=50,
                     alpha=50.0)
)

s10mw50cd50a50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=50, chain_depth=50,
                     alpha=50.0)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1a50_data, main_title="s1a50_data")
show_images1(data=s2a50_data, main_title="s2a50_data")
show_images1(data=s3a50_data, main_title="s3a50_data")
show_images1(data=s4a50_data, main_title="s4a50_data")
show_images1(data=s5a50_data, main_title="s5a50_data")
show_images1(data=s6a50_data, main_title="s6a50_data")
show_images1(data=s7a50_data, main_title="s7a50_data")
show_images1(data=s8a50_data, main_title="s8a50_data")
show_images1(data=s9a50_data, main_title="s9a50_data")
show_images1(data=s10a50_data, main_title="s10a50_data")
print()
show_images1(data=s1mw50cd50a50_data, main_title="s1mw50cd50a50_data")
show_images1(data=s2mw50cd50a50_data, main_title="s2mw50cd50a50_data")
show_images1(data=s3mw50cd50a50_data, main_title="s3mw50cd50a50_data")
show_images1(data=s4mw50cd50a50_data, main_title="s4mw50cd50a50_data")
show_images1(data=s5mw50cd50a50_data, main_title="s5mw50cd50a50_data")
show_images1(data=s6mw50cd50a50_data, main_title="s6mw50cd50a50_data")
show_images1(data=s7mw50cd50a50_data, main_title="s7mw50cd50a50_data")
show_images1(data=s8mw50cd50a50_data, main_title="s8mw50cd50a50_data")
show_images1(data=s9mw50cd50a50_data, main_title="s9mw50cd50a50_data")
show_images1(data=s10mw50cd50a50_data, main_title="s10mw50cd50a50_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0,
                 ao=True, ip=InterpolationMode.BILINEAR, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            am = AugMix(severity=s, mixture_width=mw, chain_depth=cd,
                        alpha=a, all_ops=ao, interpolation=ip, fill=f)
            plt.imshow(X=am(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1a50_data", s=1, a=50.0)
show_images2(data=origin_data, main_title="s2a50_data", s=2, a=50.0)
show_images2(data=origin_data, main_title="s3a50_data", s=3, a=50.0)
show_images2(data=origin_data, main_title="s4a50_data", s=4, a=50.0)
show_images2(data=origin_data, main_title="s5a50_data", s=5, a=50.0)
show_images2(data=origin_data, main_title="s6a50_data", s=6, a=50.0)
show_images2(data=origin_data, main_title="s7a50_data", s=7, a=50.0)
show_images2(data=origin_data, main_title="s8a50_data", s=8, a=50.0)
show_images2(data=origin_data, main_title="s9a50_data", s=9, a=50.0)
show_images2(data=origin_data, main_title="s10a50_data", s=10, a=50.0)
print()
show_images2(data=origin_data, main_title="s1mw50cd50a50_data", s=1, mw=50,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s2mw50cd50a50_data", s=2, mw=50,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s3mw50cd50a50_data", s=3, mw=50,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s4mw50cd50a50_data", s=4, mw=50,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s5mw50cd50a50_data", s=5, mw=50,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s6mw50cd50a50_data", s=6, mw=50,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s7mw50cd50a50_data", s=7, mw=50,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s8mw50cd50a50_data", s=8, mw=50,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s9mw50cd50a50_data", s=9, mw=50,
             cd=50, a=50.0)
show_images2(data=origin_data, main_title="s10mw50cd50a50_data", s=10, mw=50,
             cd=50, a=50.0)
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

Top comments (0)

Image of Datadog

How to Diagram Your Cloud Architecture

Cloud architecture diagrams provide critical visibility into the resources in your environment and how they’re connected. In our latest eBook, AWS Solution Architects Jason Mimick and James Wenzel walk through best practices on how to build effective and professional diagrams.

Download the Free eBook

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay