DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

AugMix in PyTorch (2)

Buy Me a Coffee

*Memos:

AugMix() can randomly do AugMix to an image as shown below. *It's about severity argument (1):

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AugMix
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s1_data = OxfordIIITPet( # `s` is severity.
    root="data",
    transform=AugMix(severity=1)
)

s2_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=2)
)

s3_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=3)
)

s4_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=4)
)

s5_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=5)
)

s6_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=6)
)

s7_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=7)
)

s8_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=8)
)

s9_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=9)
)

s10_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1_data, main_title="s1_data")
show_images1(data=s2_data, main_title="s2_data")
show_images1(data=s3_data, main_title="s3_data")
show_images1(data=s4_data, main_title="s4_data")
show_images1(data=s5_data, main_title="s5_data")
show_images1(data=s6_data, main_title="s6_data")
show_images1(data=s7_data, main_title="s7_data")
show_images1(data=s8_data, main_title="s8_data")
show_images1(data=s9_data, main_title="s9_data")
show_images1(data=s10_data, main_title="s10_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0,
                 ao=True, ip=InterpolationMode.BILINEAR, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            am = AugMix(severity=s, mixture_width=mw, chain_depth=cd,
                        alpha=a, all_ops=ao, interpolation=ip, fill=f)
            plt.imshow(X=am(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1_data", s=1)
show_images2(data=origin_data, main_title="s2_data", s=2)
show_images2(data=origin_data, main_title="s3_data", s=3)
show_images2(data=origin_data, main_title="s4_data", s=4)
show_images2(data=origin_data, main_title="s5_data", s=5)
show_images2(data=origin_data, main_title="s6_data", s=6)
show_images2(data=origin_data, main_title="s7_data", s=7)
show_images2(data=origin_data, main_title="s8_data", s=8)
show_images2(data=origin_data, main_title="s9_data", s=9)
show_images2(data=origin_data, main_title="s10_data", s=10)
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image of Quadratic

Free AI chart generator

Upload data, describe your vision, and get Python-powered, AI-generated charts instantly.

Try Quadratic free

Top comments (0)

👋 Kindness is contagious

If this article connected with you, consider tapping ❤️ or leaving a brief comment to share your thoughts!

Okay