DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

CenterCrop in PyTorch

Buy Me a Coffee

*Memos:

CenterCrop() can crop an image, centering on it as shown below:

*Memos:

  • The 1st argument for initialization is size(Required-Type:int or tuple/list(int) or size()): *Memos:
    • It's [height, width].
    • It must be 1 <= x.
    • A tuple/list must be the 1D with 1 or 2 elements.
    • A single value(int or tuple/list(int)) means [size, size].
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import CenterCrop

cc = CenterCrop(size=100)

cc
# CenterCrop(size=(100, 100))

cc.size
# (100, 100)

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s1000_data = OxfordIIITPet( # `s` is size.
    root="data",
    transform=CenterCrop(size=1000)
    # transform=CenterCrop(size=[1000])
    # transform=CenterCrop(size=[1000, 1000])
)

s800_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=800)
)

s600_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=600)
)

s400_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=400)
)

s200_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=200)
)

s100_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=100)
)

s50_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=50)
)

s10_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=10)
)

s1_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=1)
)

s600_900_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=[600, 900])
)

s900_600_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=[900, 600])
)

s200_300_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=[200, 300])
)

s300_200_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=[300, 200])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=s1000_data, main_title="s1000_data")
show_images1(data=s800_data, main_title="s800_data")
show_images1(data=s600_data, main_title="s600_data")
show_images1(data=s400_data, main_title="s400_data")
show_images1(data=s200_data, main_title="s200_data")
show_images1(data=s100_data, main_title="s100_data")
show_images1(data=s50_data, main_title="s50_data")
show_images1(data=s10_data, main_title="s10_data")
show_images1(data=s1_data, main_title="s1_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=s600_900_data, main_title="s600_900_data")
show_images1(data=s900_600_data, main_title="s900_600_data")
show_images1(data=s200_300_data, main_title="s200_300_data")
show_images1(data=s300_200_data, main_title="s300_200_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            cc = CenterCrop(size=s)
            plt.imshow(X=cc(im))
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="s1000_data", s=1000)
show_images2(data=origin_data, main_title="s800_data", s=800)
show_images2(data=origin_data, main_title="s600_data", s=500)
show_images2(data=origin_data, main_title="s400_data", s=400)
show_images2(data=origin_data, main_title="s200_data", s=200)
show_images2(data=origin_data, main_title="s100_data", s=100)
show_images2(data=origin_data, main_title="s50_data", s=50)
show_images2(data=origin_data, main_title="s10_data", s=10)
show_images2(data=origin_data, main_title="s1_data", s=1)
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="s600_900_data", s=[600, 900])
show_images2(data=origin_data, main_title="s900_600_data", s=[900, 600])
show_images2(data=origin_data, main_title="s200_300_data", s=[200, 300])
show_images2(data=origin_data, main_title="s300_200_data", s=[300, 200])
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Heroku

This site is built on Heroku

Join the ranks of developers at Salesforce, Airbase, DEV, and more who deploy their mission critical applications on Heroku. Sign up today and launch your first app!

Get Started

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay