DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

empty and empty_like in PyTorch

Buy Me a Coffee

*My post explains empty_strided().

empty() can create the 0D or more D tensor of the zero or more floating-point numbers(Default), integers, complex numbers or boolean values from uninitialized memory which are called uninitialized data as shown below:

*Memos:

  • empty() can be used with torch but not with a tensor.
  • The 1st or more arguments with torch are size(Required-Type:int, tuple of int, list of int or size()).
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • You can use torch.Tensor() or torch.FloatTensor() like torch.Tensor(3, 2, 4) or torch.FloatTensor(3, 2, 4) because they can do the same job as empty(). *torch.Tensor() is the alias of torch.FloatTensor() by default.
  • Uninitialized memory has data but the data is unknown.
import torch

torch.empty(size=())
torch.empty(size=torch.tensor(8).size())
# tensor(3.6404e-27)

torch.empty(size=(0,))
torch.empty(0)
torch.empty(size=torch.tensor([]).size())
# tensor([])

torch.empty(size=(3,))
torch.empty(3)
torch.empty(size=torch.tensor([8, 3, 6]).size())
# tensor([-1.3610e+13, 4.4916e-41, -1.3610e+13])

torch.empty(size=(3, 2))
torch.empty(3, 2)
torch.empty(size=torch.tensor([[8, 3], [6, 0], [2, 9]]).size())
# tensor([[-1.3610e+13, 4.4916e-41],
#         [5.7850e-23, 3.1100e-41],
#         [4.4842e-44, 0.0000e+00]])

torch.empty(size=(3, 2, 4))
torch.empty(3, 2, 4)
# tensor([[[3.8848e-23, 3.1100e-41, 0.0000e+00, 0.0000e+00],
#          [3.3892e-23, 3.1100e-41, 3.0224e-26, 3.1100e-41]],
#         [[-6.0464e-34, 4.4914e-41, 0.0000e+00, 0.0000e+00],
#          [0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00]],
#         [[0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00],
#          [0.0000e+00, 0.0000e+00, 1.4013e-45, 0.0000e+00]]])

torch.empty(size=(3, 2, 4), dtype=torch.int64)
torch.empty(3, 2, 4, dtype=torch.int64)
# tensor([[[136263006428688, 96270204571280, 1, 96270203986320],
#          [0, 0, 96270208839376, 96270118417696]],
#         [[136257315028352, 0, 0, 0], 
#          [0, 0, 0, 1]],
#         [[0, 0, 0, 0],
#          [0, 1, 352951805673479, 2542620672001]]])

torch.empty(size=(3, 2, 4), dtype=torch.complex64)
torch.empty(3, 2, 4, dtype=torch.complex64)
# tensor([[[1.4167e-07+4.4458e-41j, 1.4167e-07+4.4458e-41j,
#           4.4842e-44+0.0000e+00j, 1.5695e-43+0.0000e+00j],
#          [-1.4883e+19+3.1404e-41j, 0.0000e+00+0.0000e+00j,
#           1.4013e-45+0.0000e+00j, -4.9888e-15+3.1409e-41j]],
#         [[-2.4481e+37+4.4456e-41j, -4.9888e-15+3.1409e-41j,
#           9.1477e-41+0.0000e+00j, 8.9683e-44+0.0000e+00j],
#          [3.5873e-43+0.0000e+00j, -2.6273e+37+4.4456e-41j,
#           0.0000e+00+0.0000e+00j, 0.0000e+00+0.0000e+00j]],
#         [[0.0000e+00+0.0000e+00j, 2.4803e-43+0.0000e+00j,
#           -4.6535e-15+3.1409e-41j, -3.2145e-15+3.1409e-41j],
#          [0.0000e+00+0.0000e+00j,  1.4013e-45+0.0000e+00j,
#           -1.7014e+38+1.1515e-40j,  4.5919e-41+8.2957e-43j]]])

torch.empty(size=(3, 2, 4), dtype=torch.bool)
torch.empty(3, 2, 4, dtype=torch.bool)
# tensor([[[True, True, True, True],
#          [True, False, False, False]],
#         [[True, True, True, True],
#          [True, True, False, False]],
#         [[False, True, False, False],
#          [False, False, False, False]]])
Enter fullscreen mode Exit fullscreen mode

empty_like() can replace the zero or more numbers of a 0D or more D tensor with the zero or more floating-point numbers, integers, complex numbers or boolean values from uninitialized memory which are called uninitialized data as shown below:

*Memos:

  • empty_like() can be used with torch but not with a tensor.
  • The 1st argument with torch is input(Required-Type:tensor of int, float, complex or bool).
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's inferred from input.
    • dtype= must be used.
    • My post explains dtype argument.
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
    • If it's None, it's inferred from input.
    • device= must be used.
    • My post explains device argument.
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
  • Uninitialized memory has data but the data is unknown.
import torch

my_tensor = torch.tensor(7.)
torch.empty_like(input=my_tensor)
# tensor(-1.3610e+13)

my_tensor = torch.tensor([7., 4., 5.])
torch.empty_like(input=my_tensor)
# tensor([2.8244e+23, 4.4787e-41, -5.7316e-07])

my_tensor = torch.tensor([[7., 4., 5.], [2., 8., 3.]])
torch.empty_like(input=my_tensor)
# tensor([[-4.7415e-07, 3.1221e-41, -6.4098e-07],
#         [3.1221e-41, 1.1210e-43, 0.0000e+00]])

my_tensor = torch.tensor([[[7., 4., 5.], [2., 8., 3.]],
                          [[6., 0., 1.], [5., 9., 4.]]])
torch.empty_like(input=my_tensor)
# tensor([[[-6.6094e-07, 3.1221e-41, -3.9661e-07],
#          [3.1221e-41, 8.9683e-44, 0.0000e+00]],
#         [[1.1210e-43, 0.0000e+00, -8.9451e+02],
#          [3.1228e-41, 1.7282e-04, 1.2471e+16]]])

my_tensor = torch.tensor([[[7, 4, 5], [2, 8, 3]],
                          [[6, 0, 1], [5, 9, 4]]])
torch.empty_like(input=my_tensor)
# tensor([[[137273168313840, 95694909291296, 1],
#          [95694912519088, 95694842532640, 0]],
#         [[95694862074384, 95694820258896, 137269160918960],
#          [0, 0, 0]]])

my_tensor = torch.tensor([[[7.+4.j, 4.+2.j, 5.+3.j],
                           [2.+5.j, 8.+1.j, 3.+9.j]],
                          [[6.+9.j, 0.+3.j, 1.+8.j],
                           [5.+3.j, 9.+4.j, 4.+6.j]]])
torch.empty_like(input=my_tensor)
# tensor([[[6.7127e-07+1.7183e-04j,
#           1.6519e-04+1.0187e-11j,
#           2.0661e+20+6.8629e-07j],
#          [1.8077e-43+0.0000e+00j,
#           -4.3084e-07+3.1221e-41j,
#           -3.8936e-07+3.1221e-41j]],
#         [[4.4842e-44+0.0000e+00j,
#           4.4842e-44+0.0000e+00j,
#           -8.7266e+02+3.1228e-41j],
#          [2.8026e-45+0.0000e+00j,
#           4.2039e-45+0.0000e+00j,
#           9.1084e-44+0.0000e+00j]]])

my_tensor = torch.tensor([[[True, False, True], [False, True, False]], 
                          [[True, False, True], [False, True, False]]])
torch.empty_like(input=my_tensor)
# tensor([[[True, True, True],
#          [True, True, False]],
#         [[False, False, True],
#          [True, True, True]]])
Enter fullscreen mode Exit fullscreen mode

Heroku

Build apps, not infrastructure.

Dealing with servers, hardware, and infrastructure can take up your valuable time. Discover the benefits of Heroku, the PaaS of choice for developers since 2007.

Visit Site

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs