DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

1

gather in PyTorch

Buy Me a Coffee

*My post explains take() and take_along_dim().

gather() can get the 0D or more D tensor of zero or more elements using the 0D or more D tensor of zero or more indices from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • gather() can be called with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 3rd argument with a tensor is dim(Required-Type:int):
  • The 3rd argument with torch or the 2nd argument with a tensor is indices(Required-Type:tensor of int).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • Basically, an input and indices tensor must be the same D and the returned tensor is the D but the combination of a 0D(input) and 1D(indices) tensor or a 1D(input) and 0D(indices) tensor is possible, then the returned tensor is the same D as indices.
import torch

my_tensor = torch.tensor([[10, 11, 12, 13],
                          [14, 15, 16, 17],
                          [18, 19, 20, 21]])
torch.gather(input=my_tensor, dim=0,
             index=torch.tensor([[0, 0, 0, 0], 
                                 [1, 1, 1, 1],
                                 [2, 2, 2, 2]]))
my_tensor.gather(dim=0, index=torch.tensor([[0, 0, 0, 0], 
                                            [1, 1, 1, 1],
                                            [2, 2, 2, 2]]))
torch.gather(input=my_tensor, dim=-2,
             index=torch.tensor([[0, 0, 0, 0], 
                                 [1, 1, 1, 1],
                                 [2, 2, 2, 2]]))
# tensor([[10, 11, 12, 13],
#         [14, 15, 16, 17],
#         [18, 19, 20, 21]])

torch.gather(input=my_tensor, dim=0,
             index=torch.tensor([[0, 2, 1, 0], 
                                 [1, 0, 2, 1],
                                 [2, 1, 0, 2]]))
# tensor([[10, 19, 16, 13],
#         [14, 11, 20, 17],
#         [18, 15, 12, 21]])

torch.gather(input=my_tensor, dim=0,
             index=torch.tensor([[0, 2, 1, 0], 
                                 [1, 0, 2, 1]]))
# tensor([[10, 19, 16, 13],
#         [14, 11, 20, 17]])

torch.gather(input=my_tensor, dim=0,
             index=torch.tensor([[0, 2], 
                                 [1, 0],
                                 [2, 1],
                                 [0, 2],
                                 [1, 0]]))
# tensor([[10, 19],
#         [14, 11],
#         [18, 15],
#         [10, 19],
#         [14, 11]])

torch.gather(input=my_tensor, dim=1,
             index=torch.tensor([[0, 1, 2, 3],
                                 [0, 1, 2, 3],
                                 [0, 1, 2, 3]]))
torch.gather(input=my_tensor, dim=-1,
             index=torch.tensor([[0, 1, 2, 3],
                                 [0, 1, 2, 3],
                                 [0, 1, 2, 3]]))
# tensor([[10, 11, 12, 13],
#         [14, 15, 16, 17],
#         [18, 19, 20, 21]])

torch.gather(input=my_tensor, dim=1,
             index=torch.tensor([[0, 1, 2, 3],
                                 [3, 0, 1, 2],
                                 [2, 3, 0, 1]]))
# tensor([[10, 11, 12, 13],
#         [17, 14, 15, 16],
#         [20, 21, 18, 19]])

torch.gather(input=my_tensor, dim=1,
             index=torch.tensor([[0, 1],
                                 [3, 0],
                                 [2, 3]]))
# tensor([[10, 11],
#         [17, 14],
#         [20, 21]])

torch.gather(input=my_tensor, dim=1,
             index=torch.tensor([[0, 1, 2, 3, 0, 1],
                                 [3, 0, 1, 2, 3, 0]]))
# tensor([[10, 11, 12, 13, 10, 11],
#         [17, 14, 15, 16, 17, 14]])

my_tensor = torch.tensor([[10., 11., 12., 13.],
                          [14., 15., 16., 17.],
                          [18., 19., 20., 21.]])
torch.gather(input=my_tensor, dim=0,
             index=torch.tensor([[0, 0, 0, 0], 
                                 [1, 1, 1, 1],
                                 [2, 2, 2, 2]]))
# tensor([[10., 11., 12., 13.],
#         [14., 15., 16., 17.],
#         [18., 19., 20., 21.]])

my_tensor = torch.tensor([[10.+0.j, 11.+0.j, 12.+0.j, 13.+0.j],
                          [14.+0.j, 15.+0.j, 16.+0.j, 17.+0.j],
                          [18.+0.j, 19.+0.j, 20.+0.j, 21.+0.j]])
torch.gather(input=my_tensor, dim=0,
             index=torch.tensor([[0, 0, 0, 0], 
                                 [1, 1, 1, 1],
                                 [2, 2, 2, 2]]))
# tensor([[10.+0.j, 11.+0.j, 12.+0.j, 13.+0.j],
#         [14.+0.j, 15.+0.j, 16.+0.j, 17.+0.j],
#         [18.+0.j, 19.+0.j, 20.+0.j, 21.+0.j]])

my_tensor = torch.tensor([[True, False, True, False],
                          [False, True, False, True],
                          [True, False, True, False]])
torch.gather(input=my_tensor, dim=0,
             index=torch.tensor([[0, 0, 0, 0], 
                                 [1, 1, 1, 1],
                                 [2, 2, 2, 2]]))
# tensor([[True, False, True, False],
#         [False, True, False, True],
#         [True, False, True, False]])

my_tensor = torch.tensor([10, 11, 12, 13])

torch.gather(input=my_tensor, dim=0, index=torch.tensor(2))
# tensor(12)

my_tensor = torch.tensor(2)

torch.gather(input=my_tensor, dim=0, index=torch.tensor([0, 0, 0, 0]))
# tensor([2, 2, 2, 2])
Enter fullscreen mode Exit fullscreen mode

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs