DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

ge and le in PyTorch

Buy Me a Coffee

*Memos:

ge() can check if the zero or more elements of the 1st 0D or more D tensor are greater than or equal to the zero or more elements of the 2nd 0D or more D tensor element-wise, getting the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • ge() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is other(Required-Type:tensor or scalar of int, float or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • greater_equal() is the alias of ge().
import torch

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([3, 5, 4])

torch.ge(input=tensor1, other=tensor2)
tensor1.ge(other=tensor2)
# tensor([True, False, False])

torch.ge(input=tensor2, other=tensor1)
# tensor([False, True, True])

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[3, 5, 4],
                        [6, 3, 5]])
torch.ge(input=tensor1, other=tensor2)
# tensor([[True, False, False],
#         [False, False, False]])

torch.ge(input=tensor2, other=tensor1)
# tensor([[False, True, True],
#         [True, True, True]])

torch.ge(input=tensor1, other=3)
# tensor([True, False, True])

torch.ge(input=tensor2, other=3)
# tensor([[True, True, True],
#         [True, True, True]])

tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[3., 5., 4.],
                        [6., 3., 5.]])
torch.ge(input=tensor1, other=tensor2)
# tensor([[True, False, False],
#         [False, False, False]])

torch.ge(input=tensor1, other=3.)
# tensor([True, False, True])

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[True, False, True],
                        [False, True, False]])
torch.ge(input=tensor1, other=tensor2)
# tensor([[True, True, True],
#         [True, False, True]])

torch.ge(input=tensor1, other=True)
# tensor([True, False, True])
Enter fullscreen mode Exit fullscreen mode

le() can check if the zero or more elements of the 1st 0D or more D tensor are less than or equal to the zero or more elements of the 2nd 0D or more D tensor element-wise, getting the 0D or more D tensor of zero or more element as shown below:

*Memos:

  • le() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is other(Required-Type:tensor or scalar of int, float or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • less_equal() is the alias of le().
import torch

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([3, 5, 4])

torch.le(input=tensor1, other=tensor2)
tensor1.le(other=tensor2)
# tensor([False, True, True])

torch.le(input=tensor2, other=tensor1)
# tensor([True, False, False])

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[3, 5, 4],
                        [6, 3, 5]])
torch.le(input=tensor1, other=tensor2)
# tensor([[False, True, True],
#         [True, True, True]])

torch.le(input=tensor2, other=tensor1)
# tensor([[True, False, False],
#         [False, False, False]])

torch.le(input=tensor1, other=3)
# tensor([False, True, True])

torch.le(input=tensor2, other=3)
# tensor([[True, False, False],
#         [False, True, False]])

tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[3., 5., 4.],
                        [6., 3., 5.]])
torch.le(input=tensor1, other=tensor2)
# tensor([[False, True, True],
#         [True, True, True]])

torch.le(input=tensor1, other=3.)
# tensor([False, True, True])

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[True, False, True],
                        [False, True, False]])
torch.le(input=tensor1, other=tensor2)
# tensor([[True, True, True],
#         [False, True, False]])

torch.le(input=tensor1, other=True)
# tensor([True, True, True])
Enter fullscreen mode Exit fullscreen mode

Heroku

Simplify your DevOps and maximize your time.

Since 2007, Heroku has been the go-to platform for developers as it monitors uptime, performance, and infrastructure concerns, allowing you to focus on writing code.

Learn More

Top comments (0)

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay