DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

ge and le in PyTorch

Buy Me a Coffee

*Memos:

ge() can check if the zero or more elements of the 1st 0D or more D tensor are greater than or equal to the zero or more elements of the 2nd 0D or more D tensor element-wise, getting the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • ge() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is other(Required-Type:tensor or scalar of int, float or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • greater_equal() is the alias of ge().
import torch

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([3, 5, 4])

torch.ge(input=tensor1, other=tensor2)
tensor1.ge(other=tensor2)
# tensor([True, False, False])

torch.ge(input=tensor2, other=tensor1)
# tensor([False, True, True])

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[3, 5, 4],
                        [6, 3, 5]])
torch.ge(input=tensor1, other=tensor2)
# tensor([[True, False, False],
#         [False, False, False]])

torch.ge(input=tensor2, other=tensor1)
# tensor([[False, True, True],
#         [True, True, True]])

torch.ge(input=tensor1, other=3)
# tensor([True, False, True])

torch.ge(input=tensor2, other=3)
# tensor([[True, True, True],
#         [True, True, True]])

tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[3., 5., 4.],
                        [6., 3., 5.]])
torch.ge(input=tensor1, other=tensor2)
# tensor([[True, False, False],
#         [False, False, False]])

torch.ge(input=tensor1, other=3.)
# tensor([True, False, True])

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[True, False, True],
                        [False, True, False]])
torch.ge(input=tensor1, other=tensor2)
# tensor([[True, True, True],
#         [True, False, True]])

torch.ge(input=tensor1, other=True)
# tensor([True, False, True])
Enter fullscreen mode Exit fullscreen mode

le() can check if the zero or more elements of the 1st 0D or more D tensor are less than or equal to the zero or more elements of the 2nd 0D or more D tensor element-wise, getting the 0D or more D tensor of zero or more element as shown below:

*Memos:

  • le() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is other(Required-Type:tensor or scalar of int, float or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • less_equal() is the alias of le().
import torch

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([3, 5, 4])

torch.le(input=tensor1, other=tensor2)
tensor1.le(other=tensor2)
# tensor([False, True, True])

torch.le(input=tensor2, other=tensor1)
# tensor([True, False, False])

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[3, 5, 4],
                        [6, 3, 5]])
torch.le(input=tensor1, other=tensor2)
# tensor([[False, True, True],
#         [True, True, True]])

torch.le(input=tensor2, other=tensor1)
# tensor([[True, False, False],
#         [False, False, False]])

torch.le(input=tensor1, other=3)
# tensor([False, True, True])

torch.le(input=tensor2, other=3)
# tensor([[True, False, False],
#         [False, True, False]])

tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[3., 5., 4.],
                        [6., 3., 5.]])
torch.le(input=tensor1, other=tensor2)
# tensor([[False, True, True],
#         [True, True, True]])

torch.le(input=tensor1, other=3.)
# tensor([False, True, True])

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[True, False, True],
                        [False, True, False]])
torch.le(input=tensor1, other=tensor2)
# tensor([[True, True, True],
#         [False, True, False]])

torch.le(input=tensor1, other=True)
# tensor([True, True, True])
Enter fullscreen mode Exit fullscreen mode

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more

Top comments (0)

Image of Datadog

Measure and Advance Your DevSecOps Maturity

In this white paper, we lay out a DevSecOps maturity model based on our experience helping thousands of organizations advance their DevSecOps practices. Learn the key competencies and practices across four distinct levels of maturity.

Get The White Paper