DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

positive, neg and copysign in PyTorch

Buy Me a Coffee

positive() can just get the same tensor as the input tensor which is the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • positive() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or complex).
import torch

my_tensor = torch.tensor(7)

torch.positive(input=my_tensor)
my_tensor.positive()
# tensor(7)

my_tensor = torch.tensor([7, -1, 5, -7, -9, -3, 0, 6])

torch.positive(input=my_tensor)
# tensor([7, -1, 5, -7, -9, -3, 0, 6])

my_tensor = torch.tensor([[7, -1, 5, -7],
                          [-9, -3, 0, 6]])
torch.positive(input=my_tensor)
# tensor([[7, -1, 5, -7],
#         [-9, -3, 0, 6]])

my_tensor = torch.tensor([[[7, -1], [5, -7]],
                          [[-9, -3], [0, 6]]])
torch.positive(input=my_tensor)
# tensor([[[7, -1], [5, -7]],
#         [[-9, -3], [0, 6]]])

my_tensor = torch.tensor([[[7., -1.], [5., -7.]],
                          [[-9., -3.], [0., 6.]]])
torch.positive(input=my_tensor)
# tensor([[[7., -1.], [5., -7.]],
#         [[-9., -3.], [0., 6.]]])

my_tensor = torch.tensor([[[7.+0.j, -1.+0.j], [5.+0.j, -7.+0.j]],
                          [[-9.+0.j, -3.+0.j], [0.+0.j, 6.+0.j]]])
torch.positive(input=my_tensor)
# tensor([[[7.+0.j, -1.+0.j],
#          [5.+0.j, -7.+0.j]],
#         [[-9.+0.j, -3.+0.j],
#          [0.+0.j, 6.+0.j]]])
Enter fullscreen mode Exit fullscreen mode

neg() can get the 0D or more D tensor of the zero or more elements changed from + to - and from - to + from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • neg() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or complex).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • negative() is the alias of neg().
import torch

my_tensor = torch.tensor(7)

torch.neg(input=my_tensor)
my_tensor.neg()
# tensor(-7)

my_tensor = torch.tensor([7, -1, 5, -7, -9, -3, 0, 6])

torch.neg(input=my_tensor)
# tensor([-7, 1, -5, 7, 9, 3, 0, -6])

my_tensor = torch.tensor([[7, -1, 5, -7],
                          [-9, -3, 0, 6]])
torch.neg(input=my_tensor)
# tensor([[-7, 1, -5, 7],
#         [9, 3, 0, -6]])

my_tensor = torch.tensor([[[7, -1], [5, -7]],
                          [[-9, -3], [0, 6]]])
torch.neg(input=my_tensor)
# tensor([[[-7, 1], [-5, 7]],
#         [[9, 3], [0, -6]]])

my_tensor = torch.tensor([[[7., -1.], [5., -7.]],
                          [[-9., -3.], [0., 6.]]])
torch.neg(input=my_tensor)
# tensor([[[-7., 1.], [-5., 7.]],
#         [[9., 3.], [-0., -6.]]])

my_tensor = torch.tensor([[[7.+0.j, -1.+0.j], [5.+0.j, -7.+0.j]],
                          [[-9.+0.j, -3.+0.j], [0.+0.j, 6.+0.j]]])
torch.neg(input=my_tensor)
# tensor([[[-7.+0.j, 1.+0.j], [-5.+0.j, 7.+0.j]],
#         [[9.+0.j, 3.+0.j], [0.+0.j, -6.+0.j]]])
Enter fullscreen mode Exit fullscreen mode

copysign() can get the 0D or more D tensor of the zero or more floating point numbers changed + and - by other tensor from two of 0D or more D tensors as shown below:

*Memos:

  • copysign() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, bool).
  • The 2st argument with torch or the 1st argument is other(Required-Type:tensor or scalar of int, float or bool). *The sign(+ or -) is applied to the returned tensor.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

tensor1 = torch.tensor([[7., -1., 5., -7.],
                        [-9., -3., 0., 6.]])
tensor2 = torch.tensor([-1., 0., 1., 2.])

torch.copysign(input=tensor1, other=tensor2)
tensor1.copysign(other=tensor2)
# tensor([[-7., 1., 5., 7.],
#         [-9., 3., 0., 6.]])

torch.copysign(input=tensor1, other=2.)
# tensor([[7., 1., 5., 7.],
#         [9., 3., 0., 6.]])

tensor1 = torch.tensor([[[7., -1.], [5., -7.]],
                        [[-9., -3.], [0., 6.]]])
tensor2 = torch.tensor(-1.)

torch.copysign(input=tensor1, other=tensor2)
# tensor([[[-7., -1.], [-5., -7.]],
#         [[-9., -3.], [-0., -6.]]])

torch.copysign(input=tensor1, other=2.)
# tensor([[[7., 1.], [5., 7.]],
#         [[9., 3.], [0., 6.]]])

tensor1 = torch.tensor([[[7, -1], [5, -7]],
                        [[-9, -3], [0, 6]]])
tensor2 = torch.tensor(-1)

torch.copysign(input=tensor1, other=tensor2)
torch.copysign(input=tensor1, other=-1)
# tensor([[[-7., -1.], [-5., -7.]],
#         [[-9., -3.], [-0., -6.]]])

torch.copysign(input=tensor1, other=2)
# tensor([[[7., 1.], [5., 7.]],
#         [[9., 3.], [0., 6.]]])

tensor1 = torch.tensor([[[True, False], [True, False]],
                        [[False, True], [False, True]]])
tensor2 = torch.tensor(True)

torch.copysign(input=tensor1, other=tensor2)
torch.copysign(input=tensor1, other=False)
# tensor([[[1., 0.], [1., 0.]],
#         [[0., 1.], [0., 1.]]])
Enter fullscreen mode Exit fullscreen mode

Postmark Image

Speedy emails, satisfied customers

Are delayed transactional emails costing you user satisfaction? Postmark delivers your emails almost instantly, keeping your customers happy and connected.

Sign up

Top comments (0)

Heroku

Simplify your DevOps and maximize your time.

Since 2007, Heroku has been the go-to platform for developers as it monitors uptime, performance, and infrastructure concerns, allowing you to focus on writing code.

Learn More

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay