*Memos:
- My post explains QMNIST.
- My post explains MNIST().
- My post explains EMNIST().
- My post explains KMNIST().
- My post explains MovingMNIST().
- My post explains FashionMNIST().
QMNIST() can use QMNIST dataset as shown below:
*Memos:
- The 1st argument is root(Required-Type:strorpathlib.Path). *An absolute or relative path is possible.
- The 2nd argument is what(Optional-Default:None-Type:str). *"train"(60,000 images),"test"(60,000 images),"test10k"(10,000 images),"test50k"(50,000 images) or"nist"(402,953 images) can be set to it.
- The 3rd argument is compat(Optional-Default:True-Type:bool). *If it'sTrue, the class number of each image is returnd(for compatibility with the MNIST dataloader) while if it'sFalse, the 1D tensor of the full qmnist information is returned.
- The 4th argument is trainargument(Optional-Default:True-Type:bool): *Memos:- It's ignored if whatisn'tNone.
- If it's True, train data(60,000 images) is used while if it'sFalse, test data(60,000 images) is used.
 
- It's ignored if 
- There is transformargument(Optional-Default:None-Type:callable). *transform=must be used.
- There is target_transformargument(Optional-Default:None-Type:callable). *target_transform=must be used.
- There is downloadargument(Optional-Default:False-Type:bool): *Memos:- 
download=must be used.
- If it's True, the dataset is downloaded from the internet and extracted(unzipped) toroot.
- If it's Trueand the dataset is already downloaded, it's extracted.
- If it's Trueand the dataset is already downloaded and extracted, nothing happens.
- It should be Falseif the dataset is already downloaded and extracted because it's faster.
- You can manually download and extract the dataset(qmnist-train-images-idx3-ubyte.gz,qmnist-train-labels-idx2-int.gz,qmnist-test-labels-idx2-int.gz,qmnist-test-images-idx3-ubyte.gz,xnist-images-idx3-ubyte.xzandxnist-labels-idx2-int.xz) from here todata/QMNIST/raw/.
 
- 
from torchvision.datasets import QMNIST
train_data = QMNIST(
    root="data"
)
train_data = QMNIST(
    root="data",
    what=None,
    compat=True,
    train=True,
    transform=None,
    target_transform=None,
    download=False
)
train_data = QMNIST(
    root="data",
    what="train",
    train=False
)
test_data = QMNIST(
    root="data",
    train=False
)
test_data = QMNIST(
    root="data",
    what="test",
    train=True
)
test10k_data = QMNIST(
    root="data",
    what="test10k"
)
test50k_data = QMNIST(
    root="data",
    what="test50k",
    compat=False
)
nist_data = QMNIST(
    root="data",
    what="nist"
)
l = len
l(train_data), l(test_data), l(test10k_data), l(test50k_data), l(nist_data)
# (60000, 60000, 10000, 50000, 402953)
train_data
# Dataset QMNIST
#     Number of datapoints: 60000
#     Root location: data
#     Split: train
train_data.root
# 'data'
train_data.what
# 'train'
train_data.compat
# True
train_data.train
# True
print(train_data.transform)
# None
print(train_data.target_transform)
# None
train_data.download
# <bound method QMNIST.download of Dataset QMNIST
#     Number of datapoints: 60000
#     Root location: data
#     Split: train>
len(train_data.classes), train_data.classes
# (10,
#  ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
#   '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine'])
train_data[0]
# (<PIL.Image.Image image mode=L size=28x28>, 5)
train_data[1]
# (<PIL.Image.Image image mode=L size=28x28>, 0)
train_data[2]
# (<PIL.Image.Image image mode=L size=28x28>, 4)
train_data[3]
# (<PIL.Image.Image image mode=L size=28x28>, 1)
train_data[4]
# (<PIL.Image.Image image mode=L size=28x28>, 9)
test50k_data[0]
# (<PIL.Image.Image image mode=L size=28x28>,
#  tensor([3, 4, 2424, 51, 33, 261051, 0, 0]))
test50k_data[1]
# (<PIL.Image.Image image mode=L size=28x28>,
#  tensor([8, 1, 522, 60, 38, 55979, 0, 0]))
test50k_data[2]
# (<PIL.Image.Image image mode=L size=28x28>,
#  tensor([9, 4, 2496, 115, 39, 269531, 0, 0]))
test50k_data[3]
# (<PIL.Image.Image image mode=L size=28x28>,
#  tensor([5, 4, 2427, 77, 35, 261428, 0, 0]))
test50k_data[4]
# (<PIL.Image.Image image mode=L size=28x28>,
#  tensor([7, 4, 2524, 69, 37, 272828, 0, 0]))
import matplotlib.pyplot as plt
def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, (im, lab) in zip(range(1, 11), data):
        plt.subplot(2, 5, i)
        plt.imshow(X=im)
        if data.compat:
            plt.title(label=lab)    
        else:
            plt.title(label=lab[0].item())
    plt.tight_layout()
    plt.show()
show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")
show_images(data=test10k_data, main_title="test10k_data")
show_images(data=test50k_data, main_title="test50k_data")
show_images(data=nist_data, main_title="nist_data")
 






 
    
Top comments (0)