QMNIST() can use QMNIST dataset as shown below:
*Memos:
- The 1st argument is
root
(Required-Type:str
orpathlib.Path
). *An absolute or relative path is possible. - The 2nd argument is
what
(Optional-Default:None
-Type:str
). *"train"
(60,000 images),"test"
(60,000 images),"test10k"
(10,000 images),"test50k"
(50,000 images) or"nist"
(402,953 images) can be set to it. - The 3rd argument is
compat
(Optional-Default:True
-Type:bool
). *If it'sTrue
, the class number of each image is returnd(for compatibility with the MNIST dataloader) while if it'sFalse
, the 1D tensor of the full qmnist information is returned. - The 4th argument is
train
argument(Optional-Default:True
-Type:bool
): *Memos:- It's ignored if
what
isn'tNone
. - If it's
True
, train data(60,000 images) is used while if it'sFalse
, test data(60,000 images) is used.
- It's ignored if
- There is
transform
argument(Optional-Default:None
-Type:callable
). *transform=
must be used. - There is
target_transform
argument(Optional-Default:None
-Type:callable
). *target_transform=
must be used. - There is
download
argument(Optional-Default:False
-Type:bool
): *Memos:-
download=
must be used. - If it's
True
, the dataset is downloaded from the internet and extracted(unzipped) toroot
. - If it's
True
and the dataset is already downloaded, it's extracted. - If it's
True
and the dataset is already downloaded and extracted, nothing happens. - It should be
False
if the dataset is already downloaded and extracted because it's faster. - You can manually download and extract the dataset(
qmnist-train-images-idx3-ubyte.gz
,qmnist-train-labels-idx2-int.gz
,qmnist-test-labels-idx2-int.gz
,qmnist-test-images-idx3-ubyte.gz
,xnist-images-idx3-ubyte.xz
andxnist-labels-idx2-int.xz
) from here todata/QMNIST/raw/
.
-
from torchvision.datasets import QMNIST
train_data = QMNIST(
root="data"
)
train_data = QMNIST(
root="data",
what=None,
compat=True,
train=True,
transform=None,
target_transform=None,
download=False
)
train_data = QMNIST(
root="data",
what="train",
train=False
)
test_data = QMNIST(
root="data",
train=False
)
test_data = QMNIST(
root="data",
what="test",
train=True
)
test10k_data = QMNIST(
root="data",
what="test10k"
)
test50k_data = QMNIST(
root="data",
what="test50k",
compat=False
)
nist_data = QMNIST(
root="data",
what="nist"
)
l = len
l(train_data), l(test_data), l(test10k_data), l(test50k_data), l(nist_data)
# (60000, 60000, 10000, 50000, 402953)
train_data
# Dataset QMNIST
# Number of datapoints: 60000
# Root location: data
# Split: train
train_data.root
# 'data'
train_data.what
# 'train'
train_data.compat
# True
train_data.train
# True
print(train_data.transform)
# None
print(train_data.target_transform)
# None
train_data.download
# <bound method QMNIST.download of Dataset QMNIST
# Number of datapoints: 60000
# Root location: data
# Split: train>
len(train_data.classes)
# 10
train_data.classes
# ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
# '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
train_data[0]
# (<PIL.Image.Image image mode=L size=28x28>, 5)
test50k_data3[0]
# (<PIL.Image.Image image mode=L size=28x28>,
# tensor([3, 4, 2424, 51, 33, 261051, 0, 0]))
train_data[1]
# (<PIL.Image.Image image mode=L size=28x28>, 0)
test50k_data3[1]
# (<PIL.Image.Image image mode=L size=28x28>,
# tensor([8, 1, 522, 60, 38, 55979, 0, 0]))
train_data[2]
# (<PIL.Image.Image image mode=L size=28x28>, 4)
test50k_data3[2]
# (<PIL.Image.Image image mode=L size=28x28>,
# tensor([9, 4, 2496, 115, 39, 269531, 0, 0]))
train_data[3]
# (<PIL.Image.Image image mode=L size=28x28>, 1)
test50k_data3[3]
# (<PIL.Image.Image image mode=L size=28x28>,
# tensor([5, 4, 2427, 77, 35, 261428, 0, 0]))
train_data[4]
# (<PIL.Image.Image image mode=L size=28x28>, 9)
test50k_data3[4]
# (<PIL.Image.Image image mode=L size=28x28>,
# tensor([7, 4, 2524, 69, 37, 272828, 0, 0]))
from torchvision.datasets import QMNIST
train_data = QMNIST(
root="data",
what="train"
)
test_data = QMNIST(
root="data",
what="test"
)
test10k_data = QMNIST(
root="data",
what="test10k"
)
test50k_data = QMNIST(
root="data",
what="test50k"
)
nist_data = QMNIST(
root="data",
what="nist"
)
import matplotlib.pyplot as plt
def show_images(data, main_title=None):
plt.figure(figsize=(10, 4))
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, lab) in enumerate(data, start=1):
plt.subplot(1, 5, i)
plt.title(label=lab)
plt.imshow(X=im)
if i == 5:
break
plt.tight_layout()
plt.show()
show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")
show_images(data=test10k_data, main_title="test10k_data")
show_images(data=test50k_data, main_title="test50k_data3")
show_images(data=nist_data, main_title="nist_data")
Top comments (0)