*Memos:
- My post explains Fashion-MNIST.
- My post explains KMNIST.
- My post explains MNIST().
- My post explains EMNIST().
- My post explains QMNIST().
- My post explains KMNIST().
- My post explains MovingMNIST().
FashionMNIST() can use Fashion-MNIST dataset as shown below:
*Memos:
- The 1st argument is root(Required-Type:strorpathlib.Path). *An absolute or relative path is possible.
- The 2nd argument is train(Optional-Default:True-Type:bool). *If it'sTrue, train data(60,000 images) is used while if it'sFalse, test data(10,000 images) is used.
- The 3rd argument is transform(Optional-Default:None-Type:callable).
- The 4th argument is target_transform(Optional-Default:None-Type:callable).
- The 5th argument is download(Optional-Default:False-Type:bool): *Memos:- If it's True, the dataset is downloaded from the internet and extracted(unzipped) toroot.
- If it's Trueand the dataset is already downloaded, it's extracted.
- If it's Trueand the dataset is already downloaded and extracted, nothing happens.
- It should be Falseif the dataset is already downloaded and extracted because it's faster.
- You can manually download and extract the dataset(t10k-images-idx3-ubyte.gz,t10k-labels-idx1-ubyte.gz,train-images-idx3-ubyte.gzandtrain-labels-idx1-ubyte.gz) from here todata/FashionMNIST/raw/.
 
- If it's 
from torchvision.datasets import FashionMNIST
train_data = FashionMNIST(
    root="data"
)
train_data = FashionMNIST(
    root="data",
    train=True,
    transform=None,
    target_transform=None,
    download=False
)
test_data = FashionMNIST(
    root="data",
    train=False
)
len(train_data), len(test_data)
# (60000, 10000)
train_data
# Dataset FashionMNIST
#     Number of datapoints: 60000
#     Root location: data
#     Split: Train
train_data.root
# 'data'
train_data.train
# True
print(train_data.transform)
# None
print(train_data.target_transform)
# None
train_data.download
# <bound method MNIST.download of Dataset FashionMNIST
#     Number of datapoints: 60000
#     Root location: data
#     Split: Train>
len(train_data.classes), train_data.classes
# (10,
#  ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
#   'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'])
train_data[0]
# (<PIL.Image.Image image mode=L size=28x28>, 9)
train_data[1]
# (<PIL.Image.Image image mode=L size=28x28>, 0)
train_data[2]
# (<PIL.Image.Image image mode=L size=28x28>, 0)
train_data[3]
# (<PIL.Image.Image image mode=L size=28x28>, 3)
train_data[4]
# (<PIL.Image.Image image mode=L size=28x28>, 0)
import matplotlib.pyplot as plt
def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, (im, lab) in zip(range(1, 11), data):
        plt.subplot(2, 5, i)
        plt.imshow(X=im)
        plt.title(label=lab)
    plt.tight_layout()
    plt.show()
show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")
 



 
    
Top comments (0)