DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

RandomResizedCrop in PyTorch (3)

Buy Me a Coffee

*Memos:

RandomResizedCrop() can crop a random part of an image, then resize it to a given size as shown below. *It's about ratio argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomResizedCrop
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s1000r1_1origin_data = OxfordIIITPet( # `s` is size and `r` is ratio.
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[1, 1])
)

s1000r01_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.1, 10])
)

s1000r01_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.1, 1])
)

s1000r1_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[1, 10])
)

s1000r09_09_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.9, 0.9])
)

s1000r08_08_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.8, 0.8])
)

s1000r07_07_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.7, 0.7])
)

s1000r06_06_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.6, 0.6])
)

s1000r05_05_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.5, 0.5])
)

s1000r04_04_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.4, 0.4])
)

s1000r03_03_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.3, 0.3])
)

s1000r02_02_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.2, 0.2])
)

s1000r01_01_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.1, 0.1])
)

s1000r001_001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.01, 0.01])
)

s1000r0001_0001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.001, 0.001])
)

s1000r00001_00001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[0.0001, 0.0001])
)

s1000r2_2_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[2, 2])
)

s1000r3_3_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[3, 3])
)

s1000r4_4_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[4, 4])
)

s1000r5_5_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[5, 5])
)

s1000r6_6_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[6, 6])
)

s1000r7_7_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[7, 7])
)

s1000r8_8_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[8, 8])
)

s1000r9_9_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[9, 9])
)

s1000r10_10_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[10, 10])
)

s1000r100_100_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[100, 100])
)

s1000r1000_1000_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[1000, 1000])
)

s1000r10000_10000_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, ratio=[10000, 10000])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r01_10_data, main_title="s1000r01_10_data")
show_images1(data=s1000r01_1_data, main_title="s1000r01_1_data")
show_images1(data=s1000r1_10_data, main_title="s1000r1_10_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r09_09_data , main_title="s1000r09_09_data")
show_images1(data=s1000r08_08_data, main_title="s1000r08_08_data")
show_images1(data=s1000r07_07_data, main_title="s1000r07_07_data")
show_images1(data=s1000r06_06_data, main_title="s1000r06_06_data")
show_images1(data=s1000r05_05_data, main_title="s1000r05_05_data")
show_images1(data=s1000r04_04_data, main_title="s1000r04_04_data")
show_images1(data=s1000r03_03_data, main_title="s1000r03_03_data")
show_images1(data=s1000r02_02_data, main_title="s1000r02_02_data")
show_images1(data=s1000r01_01_data, main_title="s1000r01_01_data")
show_images1(data=s1000r001_001_data, main_title="s1000r001_001_data")
show_images1(data=s1000r0001_0001_data, main_title="s1000r0001_0001_data")
show_images1(data=s1000r00001_00001_data, main_title="s1000r00001_00001_data")
print()
show_images1(data=s1000r1_1origin_data, main_title="s1000r1_1origin_data")
show_images1(data=s1000r2_2_data, main_title="s1000r2_2_data")
show_images1(data=s1000r3_3_data, main_title="s1000r3_3_data")
show_images1(data=s1000r4_4_data, main_title="s1000r4_4_data")
show_images1(data=s1000r5_5_data, main_title="s1000r5_5_data")
show_images1(data=s1000r6_6_data, main_title="s1000r6_6_data")
show_images1(data=s1000r7_7_data, main_title="s1000r7_7_data")
show_images1(data=s1000r8_8_data, main_title="s1000r8_8_data")
show_images1(data=s1000r9_9_data, main_title="s1000r9_9_data")
show_images1(data=s1000r10_10_data, main_title="s1000r10_10_data")
show_images1(data=s1000r100_100_data, main_title="s1000r100_100_data")
show_images1(data=s1000r1000_1000_data, main_title="s1000r1000_1000_data")
show_images1(data=s1000r10000_10000_data, main_title="s1000r10000_10000_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, s=None, sc=(0.08, 1),
                 r=(0.75, 1.3333333333333333),
                 ip=InterpolationMode.BILINEAR, a=True):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
         for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            rrc = RandomResizedCrop(size=s, scale=sc,
                                    ratio=r, interpolation=ip,
                                    antialias=a)
            plt.imshow(X=rrc(im))
    else:
         for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,  
             r=[1, 1])
show_images2(data=origin_data, main_title="s1000r01_10_data", s=1000,
             r=[0.1, 10])
show_images2(data=origin_data, main_title="s1000r01_1_data", s=1000,
             r=[0.1, 1])
show_images2(data=origin_data, main_title="s1000r1_10_data", s=1000, r=[1, 10])
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,
             r=[1, 1])
show_images2(data=origin_data, main_title="s1000r09_09_data", s=1000,
             r=[0.9, 0.9])
show_images2(data=origin_data, main_title="s1000r08_08_data", s=1000,
             r=[0.8, 0.8])
show_images2(data=origin_data, main_title="s1000r07_07_data", s=1000,
             r=[0.7, 0.7])
show_images2(data=origin_data, main_title="s1000r06_06_data", s=1000,
             r=[0.6, 0.6])
show_images2(data=origin_data, main_title="s1000r05_05_data", s=1000,
             r=[0.5, 0.5])
show_images2(data=origin_data, main_title="s1000r04_04_data", s=1000,
             r=[0.4, 0.4])
show_images2(data=origin_data, main_title="s1000r03_03_data", s=1000,
             r=[0.3, 0.3])
show_images2(data=origin_data, main_title="s1000r02_02_data", s=1000,
             r=[0.2, 0.2])
show_images2(data=origin_data, main_title="s1000r01_01_data", s=1000,
             r=[0.1, 0.1])
show_images2(data=origin_data, main_title="s1000r001_001_data", s=1000,
             r=[0.01, 0.01])
show_images2(data=origin_data, main_title="s1000r0001_0001_data", s=1000,
             r=[0.001, 0.001])
show_images2(data=origin_data, main_title="s1000r00001_00001_data", s=1000,
             r=[0.0001, 0.0001])
print()
show_images2(data=origin_data, main_title="s1000r1_1origin_data", s=1000,
             r=[1, 1])
show_images2(data=origin_data, main_title="s1000r2_2_data", s=1000, r=[2, 2])
show_images2(data=origin_data, main_title="s1000r3_3_data", s=1000, r=[3, 3])
show_images2(data=origin_data, main_title="s1000r4_4_data", s=1000, r=[4, 4])
show_images2(data=origin_data, main_title="s1000r5_5_data", s=1000, r=[5, 5])
show_images2(data=origin_data, main_title="s1000r6_6_data", s=1000, r=[6, 6])
show_images2(data=origin_data, main_title="s1000r7_7_data", s=1000, r=[7, 7])
show_images2(data=origin_data, main_title="s1000r8_8_data", s=1000, r=[8, 8])
show_images2(data=origin_data, main_title="s1000r9_9_data", s=1000, r=[9, 9])
show_images2(data=origin_data, main_title="s1000r10_10_data", s=1000,
             r=[10, 10])
show_images2(data=origin_data, main_title="s1000r100_100_data", s=1000,
             r=[100, 100])
show_images2(data=origin_data, main_title="s1000r1000_1000_data", s=1000,
             r=[1000, 1000])
show_images2(data=origin_data, main_title="s1000r10000_10000_data", s=1000,
             r=[10000, 10000])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Hostinger image

Get n8n VPS hosting 3x cheaper than a cloud solution

Get fast, easy, secure n8n VPS hosting from $4.99/mo at Hostinger. Automate any workflow using a pre-installed n8n application and no-code customization.

Start now

Top comments (0)