DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

RandomRotation in PyTorch

Buy Me a Coffee

*Memos:

RandomRotation() can randomly rotate an image as shown below:

*Memos:

  • The 1st argument for initialization is degrees(Required-Type:int, float or tuple/list(int or float)): *Memos:
    • It can do rotation.
    • It's the range of the degrees [min, max] so it must be min <= max.
    • A tuple/list must be the 1D with 2 elements.
    • A single value must be 0 <= x.
    • A single value means [-degrees, +degrees].
  • The 2nd argument for initialization is interpolation(Optional-Default:InterpolationMode.NEAREST-Type:InterpolationMode).
  • The 3rd argument for initialization is expand(Optional-Default:False-Type:bool).
  • The 4th argument for initialization is center(Optional-Default:None-Type:tuple/list(int or float)): *Memos:
    • It can change the center position of an image.
    • It must be the 1D with 2 elements.
    • If at least one value is x <= 0, an image isn't shown, only showing the background of the image.
  • The 5th argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)): *Memos:
    • It can change the background of an image. *The background can be seen when rotating an image.
    • A tuple/list must be the 1D with 1 or 3 elements.
    • If all values are x <= 0, it's black.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomRotation
from torchvision.transforms.functional import InterpolationMode

rr = RandomRotation(degrees=90)
rr = RandomRotation(degrees=[-90, 90], 
                    interpolation=InterpolationMode.NEAREST,
                    expand=False,
                    center=None,
                    fill=0)
rr
# RandomRotation(degrees=[-90.0, 90.0],
#                interpolation=InterpolationMode.NEAREST,
#                expand=False,
#                fill=0)

rr.degrees
# [-90.0, 90.0]

rr.interpolation
# <InterpolationMode.NEAREST: 'nearest'>

rr.expand
# False

print(rr.center)
# None

rr.fill
# 0

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

d0origin_data = OxfordIIITPet( # `d` is degrees.
    root="data",
    transform=RandomRotation(degrees=0)
    # transform=RandomRotation(degrees=[0, 0])
)

d180_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=180)
    # transform=RandomRotation(degrees=[-180, 180])
    # transform=RandomRotation(degrees=[-360, 0])
    # transform=RandomRotation(degrees=[0, 360])
)

dn180_0_data = OxfordIIITPet( # `n` is negative.
    root="data",
    transform=RandomRotation(degrees=[-180, 0])
    # transform=RandomRotation(degrees=[180, 360])
)

d0_180_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[0, 180])
    # transform=RandomRotation(degrees=[-360, -180])
)

d15_15_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[15, 15])
    # transform=RandomRotation(degrees=[-345, -345])
)

d30_30_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[30, 30])
    # transform=RandomRotation(degrees=[-330, -330])
)

d45_45_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[45, 45])
    # transform=RandomRotation(degrees=[-315, -315])
)

d60_60_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[60, 60])
    # transform=RandomRotation(degrees=[-300, -300])
)

d75_75_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[75, 75])
    # transform=RandomRotation(degrees=[-285, -285])
)

d90_90_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[90, 90])
    # transform=RandomRotation(degrees=[-270, -270])
)

d105_105_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[105, 105])
    # transform=RandomRotation(degrees=[-255, -255])
)

d120_120_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[120, 120])
    # transform=RandomRotation(degrees=[-240, -240])
)

d135_135_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[135, 135])
    # transform=RandomRotation(degrees=[-225, -225])
)

d150_150_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[150, 150])
    # transform=RandomRotation(degrees=[-210, -210])
)

d165_165_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[165, 165])
    # transform=RandomRotation(degrees=[-195, -195])
)

d180_180_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[180, 180])
    # transform=RandomRotation(degrees=[-180, -180])
)

dn15n15_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-15, -15])
    # transform=RandomRotation(degrees=[345, 345])
)

dn30n30_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-30, -30])
    # transform=RandomRotation(degrees=[330, 330])
)

dn45n45_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-45, -45])
    # transform=RandomRotation(degrees=[315, 315])
)

dn60n60_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-60, -60])
    # transform=RandomRotation(degrees=[300, 300])
)

dn75n75_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-75, -75])
    # transform=RandomRotation(degrees=[285, 285])
)

dn90n90_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-90, -90])
    # transform=RandomRotation(degrees=[270, 270])
)

dn105n105_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-105, -105])
    # transform=RandomRotation(degrees=[255, 255])
)

dn120n120_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-120, -120])
    # transform=RandomRotation(degrees=[240, 240])
)

dn135n135_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-135, -135])
    # transform=RandomRotation(degrees=[225, 225])
)

dn150n150_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-150, -150])
    # transform=RandomRotation(degrees=[210, 210])
)

dn165n165_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-165, -165])
    # transform=RandomRotation(degrees=[195, 195])
)

dn180n180_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-180, -180])
    # transform=RandomRotation(degrees=[180, 180])
)

dn90n90expand_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[-90, -90], expand=True)
)

d180_180c270_200_data = OxfordIIITPet( # `c` is center.
    root="data",
    transform=RandomRotation(degrees=[180, 180], center=[270, 200])
)

dn45n45fgray_data = OxfordIIITPet( # `f` is fill.
    root="data",
    transform=RandomRotation(degrees=[-45, -45], fill=150)
)

d135_135fpurple_data = OxfordIIITPet(
    root="data",
    transform=RandomRotation(degrees=[135, 135], fill=[160, 32, 240])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=d0origin_data, main_title="d0origin_data")
show_images1(data=d180_data, main_title="d180_data")
show_images1(data=dn180_0_data, main_title="dn180_0_data")
show_images1(data=d0_180_data, main_title="d0_180_data")
print()
show_images1(data=d0origin_data, main_title="d0origin_data")
show_images1(data=d15_15_data, main_title="d15_15_data")
show_images1(data=d30_30_data, main_title="d30_30_data")
show_images1(data=d45_45_data, main_title="d45_45_data")
show_images1(data=d60_60_data, main_title="d60_60_data")
show_images1(data=d75_75_data, main_title="d75_75_data")
show_images1(data=d90_90_data, main_title="d90_90_data")
show_images1(data=d105_105_data, main_title="d105_105_data")
show_images1(data=d120_120_data, main_title="d120_120_data")
show_images1(data=d135_135_data, main_title="d135_135_data")
show_images1(data=d150_150_data, main_title="d150_150_data")
show_images1(data=d165_165_data, main_title="d165_165_data")
show_images1(data=d180_180_data, main_title="d180_180_data")
print()
show_images1(data=d0origin_data, main_title="d0origin_data")
show_images1(data=dn15n15_data, main_title="dn15n15_data")
show_images1(data=dn30n30_data, main_title="dn30n30_data")
show_images1(data=dn45n45_data, main_title="dn45n45_data")
show_images1(data=dn60n60_data, main_title="dn60n60_data")
show_images1(data=dn75n75_data, main_title="dn75n75_data")
show_images1(data=dn90n90_data, main_title="dn90n90_data")
show_images1(data=dn105n105_data, main_title="dn105n105_data")
show_images1(data=dn120n120_data, main_title="dn120n120_data")
show_images1(data=dn135n135_data, main_title="dn135n135_data")
show_images1(data=dn150n150_data, main_title="dn150n150_data")
show_images1(data=dn165n165_data, main_title="dn165n165_data")
show_images1(data=dn180n180_data, main_title="dn180n180_data")
print()
show_images1(data=dn90n90expand_data, main_title="dn90n90expand_data")
show_images1(data=d180_180c270_200_data, main_title="d180_180c270_200_data")
show_images1(data=dn45n45fgray_data, main_title="dn45n45fgray_data")
show_images1(data=d135_135fpurple_data, main_title="d135_135fpurple_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, d=None, ip=InterpolationMode.NEAREST,
                 e=False, c=None, f=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if d != None:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            rr = RandomRotation(degrees=d, interpolation=ip,
                                expand=e, center=c, fill=f)
            plt.imshow(X=rr(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="d0origin_data", d=0)
show_images2(data=origin_data, main_title="d180_data", d=180)
show_images2(data=origin_data, main_title="dn180_0_data", d=[-180, 0])
show_images2(data=origin_data, main_title="d0_180_data", d=[0, 180])
print()
show_images2(data=origin_data, main_title="d0origin_data", d=0)
show_images2(data=origin_data, main_title="d15_15_data", d=[15, 15])
show_images2(data=origin_data, main_title="d30_30_data", d=[30, 30])
show_images2(data=origin_data, main_title="d45_45_data", d=[45, 45])
show_images2(data=origin_data, main_title="d60_60_data", d=[60, 60])
show_images2(data=origin_data, main_title="d75_75_data", d=[75, 75])
show_images2(data=origin_data, main_title="d90_90_data", d=[90, 90])
show_images2(data=origin_data, main_title="d105_105_data", d=[105, 105])
show_images2(data=origin_data, main_title="d120_120_data", d=[120, 120])
show_images2(data=origin_data, main_title="d135_135_data", d=[135, 135])
show_images2(data=origin_data, main_title="d150_150_data", d=[150, 150])
show_images2(data=origin_data, main_title="d165_165_data", d=[165, 165])
show_images2(data=origin_data, main_title="d180_180_data", d=[180, 180])
print()
show_images2(data=origin_data, main_title="d0origin_data", d=0)
show_images2(data=origin_data, main_title="dn15n15_data", d=[-15, -15])
show_images2(data=origin_data, main_title="dn30n30_data", d=[-30, -30])
show_images2(data=origin_data, main_title="dn45n45_data", d=[-45, -45])
show_images2(data=origin_data, main_title="dn60n60_data", d=[-60, -60])
show_images2(data=origin_data, main_title="dn75n75_data", d=[-75, -75])
show_images2(data=origin_data, main_title="dn90n90_data", d=[-90, -90])
show_images2(data=origin_data, main_title="dn105n105_data",
             d=[-105, -105])
show_images2(data=origin_data, main_title="dn120n120_data",
             d=[-120, -120])
show_images2(data=origin_data, main_title="dn135n135_data",
             d=[-135, -135])
show_images2(data=origin_data, main_title="dn150n150_data",
             d=[-150, -150])
show_images2(data=origin_data, main_title="dn165n165_data",
             d=[-165, -165])
show_images2(data=origin_data, main_title="dn180n180_data",
             d=[-180, -180])
print()
show_images2(data=origin_data, main_title="dn90n90expand_data", d=[-90, -90], 
             e=True)
show_images2(data=origin_data, main_title="d180_180c270_200_data",
             d=[180, 180], c=[270, 200])
show_images2(data=origin_data, main_title="dn45n45fgray_data",
             d=[-45, -45], f=150)
show_images2(data=origin_data, main_title="d135_135fpurple_data",
             d=[135, 135], f=[160, 32, 240])
Enter fullscreen mode Exit fullscreen mode

Image description


Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Hostinger image

Get n8n VPS hosting 3x cheaper than a cloud solution

Get fast, easy, secure n8n VPS hosting from $4.99/mo at Hostinger. Automate any workflow using a pre-installed n8n application and no-code customization.

Start now

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay