*My post explains unsqueeze().
squeeze() can get the 0D or more D tensor of the zero or more elements whose zero or more dimensions are removed if the size is 1
from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
squeeze()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - The 2nd argument with
torch
or the 1st or more arguments with a tensor aredim
(Optional-Type:int
,tuple
ofint
orlist
ofint
): *Memos:- Each number must be unique.
- It can remove the specific zero or more dimensions whose size is
1
. - If the size is not
1
, zero or more dimensions are not removed even if you set it.
import torch
my_tensor = torch.tensor([[[[0], [1]],
[[2], [3]],
[[4], [5]]]])
torch.squeeze(input=my_tensor)
my_tensor.squeeze()
torch.squeeze(input=my_tensor, dim=(0, 3))
my_tensor.squeeze(dim=(0, 3))
my_tensor.squeeze(0, 3)
torch.squeeze(input=my_tensor, dim=(0, 1, 3))
my_tensor.squeeze(dim=(0, 1, 3))
my_tensor.squeeze(0, 1, 3)
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2, 3))
my_tensor.squeeze(dim=(0, 1, 2, 3))
my_tensor.squeeze(0, 1, 2, 3)
etc.
# tensor([[0, 1],
# [2, 3],
# [4, 5]])
torch.squeeze(input=my_tensor, dim=0)
torch.squeeze(input=my_tensor, dim=-4)
torch.squeeze(input=my_tensor, dim=(0,))
torch.squeeze(input=my_tensor, dim=(-4,))
torch.squeeze(input=my_tensor, dim=(0, 1))
torch.squeeze(input=my_tensor, dim=(0, 2))
torch.squeeze(input=my_tensor, dim=(0, -2))
torch.squeeze(input=my_tensor, dim=(0, -3))
torch.squeeze(input=my_tensor, dim=(1, 0))
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2))
etc.
# tensor([[[0], [1]],
# [[2], [3]],
# [[4], [5]]])
torch.squeeze(input=my_tensor, dim=1)
torch.squeeze(input=my_tensor, dim=2)
torch.squeeze(input=my_tensor, dim=-2)
torch.squeeze(input=my_tensor, dim=-3)
torch.squeeze(input=my_tensor, dim=())
torch.squeeze(input=my_tensor, dim=(1,))
torch.squeeze(input=my_tensor, dim=(2,))
torch.squeeze(input=my_tensor, dim=(-2,))
torch.squeeze(input=my_tensor, dim=(-3,))
torch.squeeze(input=my_tensor, dim=(1, 2))
etc.
# tensor([[[[0], [1]],
# [[2], [3]],
# [[4], [5]]]])
torch.squeeze(input=my_tensor, dim=3)
torch.squeeze(input=my_tensor, dim=-1)
torch.squeeze(input=my_tensor, dim=(3,))
torch.squeeze(input=my_tensor, dim=(-1,))
torch.squeeze(input=my_tensor, dim=(1, 3))
torch.squeeze(input=my_tensor, dim=(1, -1))
torch.squeeze(input=my_tensor, dim=(2, 3))
torch.squeeze(input=my_tensor, dim=(2, -1))
torch.squeeze(input=my_tensor, dim=(3, 1))
etc.
torch.squeeze(input=my_tensor, dim=(1, 2, 3))
etc.
# tensor([[[0, 1],
# [2, 3],
# [4, 5]]])
my_tensor = torch.tensor([[[[0.], [1.]],
[[2.], [3.]],
[[4.], [5.]]]])
torch.squeeze(input=my_tensor)
# tensor([[0., 1.],
# [2., 3.],
# [4., 5.]])
my_tensor = torch.tensor([[[[0.+0.j], [1.+0.j]],
[[2.+0.j], [3.+0.j]],
[[4.+0.j], [5.+0.j]]]])
torch.squeeze(input=my_tensor)
# tensor([[0.+0.j, 1.+0.j],
# [2.+0.j, 3.+0.j],
# [4.+0.j, 5.+0.j]])
my_tensor = torch.tensor([[[[True], [False]],
[[False], [True]],
[[True], [False]]]])
torch.squeeze(input=my_tensor)
# tensor([[True, False],
# [False, True],
# [True, False]])
Top comments (0)