unsqueeze() can get the 1D or more D tensor of zero or more elements with additional dimension whose size is 1
from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
unsqueeze()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - The 2nd argument with
torch
or the 1st argument with a tensor isdim
(Required-Type:int
). *It can add the dimension whose size is1
to a specific position.
import torch
my_tensor = torch.tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[10, 11, 12]])
torch.unsqueeze(input=my_tensor, dim=0)
my_tensor.unsqueeze(dim=0)
torch.unsqueeze(input=my_tensor, dim=-3)
# tensor([[[0, 1, 2],
# [3, 4, 5],
# [6, 7, 8]
# [10, 11, 12]]])
torch.unsqueeze(input=my_tensor, dim=1)
torch.unsqueeze(input=my_tensor, dim=-2)
# tensor([[[0, 1, 2]],
# [[3, 4, 5]],
# [[6, 7, 8]]
# [[10, 11, 12]]])
torch.unsqueeze(input=my_tensor, dim=2)
torch.unsqueeze(input=my_tensor, dim=-1)
# tensor([[[0], [1], [2]],
# [[3], [4], [5]],
# [[6], [7], [8]],
# [[10], [11], [12]]])
torch.unsqueeze(input=my_tensor, dim=3)
torch.unsqueeze(input=my_tensor, dim=-1)
# tensor([[[[0], [1], [2], [3]], [[4], [5], [6], [7]]],
# [[[8], [9], [10], [11]], [[12], [13], [14], [15]]],
# [[[16], [17], [18], [19]], [[20], [21], [22], [23]]]])
my_tensor = torch.tensor([[0., 1., 2.],
[3., 4., 5.],
[6., 7., 8.],
[10., 11., 12.]])
torch.unsqueeze(input=my_tensor, dim=0)
# tensor([[[0., 1., 2.],
# [3., 4., 5.],
# [6., 7., 8.],
# [10., 11., 12.]]])
my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j],
[3.+0.j, 4.+0.j, 5.+0.j],
[6.+0.j, 7.+0.j, 8.+0.j],
[10.+0.j, 11.+0.j, 12.+0.j]])
torch.unsqueeze(input=my_tensor, dim=0)
# tensor([[[0.+0.j, 1.+0.j, 2.+0.j],
# [3.+0.j, 4.+0.j, 5.+0.j],
# [6.+0.j, 7.+0.j, 8.+0.j],
# [10.+0.j, 11.+0.j, 12.+0.j]]])
my_tensor = torch.tensor([[True, False, True],
[False, True, False],
[True, False, True],
[False, True, False]])
torch.unsqueeze(input=my_tensor, dim=0)
# tensor([[[True, False, True],
# [False, True, False],
# [True, False, True],
# [False, True, False]]])
Top comments (0)