DEV Community

James Li
James Li

Posted on

2 1 1 1 1

Agent Task Orchestration System: From Design to Production

Why Task Orchestration?

Imagine this scenario: A user requests an Agent to complete a market research report. This task requires:

  1. Collecting market data
  2. Analyzing competitors
  3. Generating charts
  4. Writing the report

This is a typical scenario that requires task orchestration.

Core Architecture Design

1. Task Decomposition Strategy

Using LLM for intelligent task decomposition:

from typing import List, Dict
import asyncio

class TaskDecomposer:
    def __init__(self, llm_service):
        self.llm = llm_service

    async def decompose_task(self, task_description: str) -> Dict:
        """Intelligent task decomposition"""
        prompt = f"""
        Task Description: {task_description}
        Please decompose this task into subtasks, output format:
        {{
            "subtasks": [
                {{
                    "id": "task_1",
                    "name": "subtask name",
                    "description": "detailed description",
                    "dependencies": [],
                    "estimated_time": "estimated duration (minutes)"
                }}
            ]
        }}
        Requirements:
        1. Appropriate subtask granularity
        2. Clear task dependencies
        3. Suitable for parallel processing
        """

        response = await self.llm.generate(prompt)
        return self._validate_and_process(response)

    def _validate_and_process(self, decomposition_result: dict) -> dict:
        """Validate and process decomposition results"""
        # Validate task dependency relationships
        self._check_circular_dependencies(decomposition_result["subtasks"])
        # Build task execution graph
        return self._build_execution_graph(decomposition_result["subtasks"])
Enter fullscreen mode Exit fullscreen mode

2. Parallel Processing Architecture

Using async task pool for parallel execution:

class TaskExecutor:
    def __init__(self, max_workers: int = 5):
        self.max_workers = max_workers
        self.task_queue = asyncio.Queue()
        self.results = {}
        self.semaphore = asyncio.Semaphore(max_workers)

    async def execute_tasks(self, task_graph: Dict):
        """Execute task graph"""
        # Create worker pool
        workers = [
            self._worker(f"worker_{i}") 
            for i in range(self.max_workers)
        ]

        # Add executable tasks to queue
        ready_tasks = self._get_ready_tasks(task_graph)
        for task in ready_tasks:
            await self.task_queue.put(task)

        # Wait for all tasks to complete
        await asyncio.gather(*workers)

    async def _worker(self, worker_id: str):
        """Worker coroutine"""
        while True:
            try:
                async with self.semaphore:
                    task = await self.task_queue.get()
                    if task is None:
                        break

                    # Execute task
                    result = await self._execute_single_task(task)
                    self.results[task["id"]] = result

                    # Check and add new executable tasks
                    new_ready_tasks = self._get_ready_tasks(task_graph)
                    for task in new_ready_tasks:
                        await self.task_queue.put(task)
            except Exception as e:
                logger.error(f"Worker {worker_id} error: {str(e)}")
Enter fullscreen mode Exit fullscreen mode

Best Practices

  1. Task Decomposition Principles

    • Maintain appropriate task granularity
    • Clearly define task dependencies
    • Consider parallel execution possibilities
    • Design reasonable failure rollback mechanisms
  2. Resource Management Strategy

    • Implement dynamic resource allocation
    • Set resource usage limits
    • Monitor resource utilization
    • Release idle resources promptly
class ResourceManager:
    def __init__(self):
        self.resource_pool = {
            'cpu': ResourcePool(max_units=16),
            'memory': ResourcePool(max_units=32),
            'gpu': ResourcePool(max_units=4)
        }

    async def allocate(self, requirements: Dict[str, int]):
        """Allocate resources"""
        allocated = {}
        try:
            for resource_type, amount in requirements.items():
                allocated[resource_type] = await self.resource_pool[resource_type].acquire(amount)
            return allocated
        except InsufficientResourceError:
            # Rollback allocated resources
            await self.release(allocated)
            raise

    async def release(self, allocated_resources: Dict):
        """Release resources"""
        for resource_type, resource in allocated_resources.items():
            await self.resource_pool[resource_type].release(resource)
Enter fullscreen mode Exit fullscreen mode
  1. Monitoring and Logging
class SystemMonitor:
    def __init__(self):
        self.metrics = {}
        self.alerts = AlertManager()

    async def monitor_task(self, task_id: str):
        """Monitor single task"""
        start_time = time.time()
        try:
            # Log task start
            self.log_task_start(task_id)

            # Monitor resource usage
            resource_usage = await self.track_resource_usage(task_id)

            # Check performance metrics
            if resource_usage['cpu'] > 80:
                await self.alerts.send_alert(
                    f"High CPU usage for task {task_id}"
                )

            return resource_usage
        finally:
            # Log task completion
            duration = time.time() - start_time
            self.log_task_completion(task_id, duration)
Enter fullscreen mode Exit fullscreen mode
  1. Performance Optimization Techniques
class PerformanceOptimizer:
    def __init__(self):
        self.cache = LRUCache(maxsize=1000)
        self.batch_processor = BatchProcessor()

    async def optimize_execution(self, tasks: List[Dict]):
        """Optimize task execution"""
        # 1. Task grouping
        task_groups = self._group_similar_tasks(tasks)

        # 2. Batch processing optimization
        optimized_groups = []
        for group in task_groups:
            if len(group) > 1:
                # Merge similar tasks
                optimized = await self.batch_processor.process(group)
            else:
                optimized = group[0]
            optimized_groups.append(optimized)

        # 3. Resource pre-allocation
        for group in optimized_groups:
            await self._preallocate_resources(group)

        return optimized_groups
Enter fullscreen mode Exit fullscreen mode

System Extensibility Considerations

  1. Plugin System Design
class PluginManager:
    def __init__(self):
        self.plugins = {}

    def register_plugin(self, name: str, plugin: Any):
        """Register plugin"""
        if not hasattr(plugin, 'execute'):
            raise InvalidPluginError(
                "Plugin must implement execute method"
            )
        self.plugins[name] = plugin

    async def execute_plugin(self, name: str, *args, **kwargs):
        """Execute plugin"""
        if name not in self.plugins:
            raise PluginNotFoundError(f"Plugin {name} not found")

        try:
            return await self.plugins[name].execute(*args, **kwargs)
        except Exception as e:
            logger.error(f"Plugin {name} execution failed: {str(e)}")
            raise
Enter fullscreen mode Exit fullscreen mode
  1. Extensible Task Types
class CustomTaskRegistry:
    _task_types = {}

    @classmethod
    def register(cls, task_type: str):
        """Register custom task type"""
        def decorator(task_class):
            cls._task_types[task_type] = task_class
            return task_class
        return decorator

    @classmethod
    def create_task(cls, task_type: str, **kwargs):
        """Create task instance"""
        if task_type not in cls._task_types:
            raise UnknownTaskTypeError(f"Unknown task type: {task_type}")

        return cls._task_types[task_type](**kwargs)

@CustomTaskRegistry.register("data_processing")
class DataProcessingTask:
    async def execute(self, data):
        # Implement data processing logic
        pass

@CustomTaskRegistry.register("report_generation")
class ReportGenerationTask:
    async def execute(self, data):
        # Implement report generation logic
        pass
Enter fullscreen mode Exit fullscreen mode

Real-world Application Example

Here's a complete market research report generation process:

async def generate_market_report(topic: str):
    # Initialize system components
    orchestrator = TaskOrchestrator()
    optimizer = PerformanceOptimizer()
    monitor = SystemMonitor()

    try:
        # 1. Task planning
        task_graph = await orchestrator.plan_tasks({
            "topic": topic,
            "required_sections": [
                "market_overview",
                "competitor_analysis",
                "trends_analysis",
                "recommendations"
            ]
        })

        # 2. Performance optimization
        optimized_tasks = await optimizer.optimize_execution(
            task_graph["tasks"]
        )

        # 3. Execute tasks
        with monitor.track_execution():
            results = await orchestrator.execute_dag({
                "tasks": optimized_tasks
            })

        # 4. Generate report
        report = await orchestrator.compile_results(results)

        return report

    except Exception as e:
        logger.error(f"Report generation failed: {str(e)}")
        # Trigger alert
        await monitor.alerts.send_alert(
            f"Report generation failed for topic: {topic}"
        )
        raise
Enter fullscreen mode Exit fullscreen mode

Performance Optimization Tips

  1. Resource Utilization Optimization

    • Implement dynamic resource allocation
    • Use resource pool management
    • Set reasonable timeout mechanisms
  2. Parallel Processing Optimization

    • Set appropriate parallelism levels
    • Implement task batching
    • Optimize task dependencies
  3. Caching Strategy Optimization

    • Use multi-level caching
    • Implement intelligent cache warming
    • Set reasonable cache invalidation policies

Summary

Building an efficient Agent task orchestration system requires consideration of:

  • Reasonable task decomposition strategies
  • Efficient parallel processing architecture
  • Reliable intermediate result management
  • Flexible task orchestration patterns
  • Comprehensive performance optimization solutions

Image of Datadog

The Future of AI, LLMs, and Observability on Google Cloud

Datadog sat down with Google’s Director of AI to discuss the current and future states of AI, ML, and LLMs on Google Cloud. Discover 7 key insights for technical leaders, covering everything from upskilling teams to observability best practices

Learn More

Top comments (0)

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay