DEV Community

Julien Simon
Julien Simon

Posted on • Originally published at julsimon.Medium on

1

Building a Retrieval-Augmented Generation (RAG) Chatbot with LangChain, Hugging Face, and AWS

Building a Retrieval-Augmented Generation (RAG) Chatbot with LangChain, Hugging Face, and AWS

SIn this video, I’ll guide you through the process of creating a Retrieval-Augmented Generation (RAG) chatbot using open-source tools and AWS services, such as LangChain, Hugging Face, FAISS, Amazon SageMaker, and Amazon TextTract.

We begin by working with PDF files in the Energy domain. Our first step involves leveraging Amazon TextTract to extract valuable information from these PDFs. Following the extraction, we break down the text into smaller, more manageable chunks. These chunks are then enriched using a Hugging Face feature extraction model before being organized and stored within a FAISS index for efficient retrieval.

To ensure a seamless workflow, we employ LangChain to orchestrate the entire process. With LangChain as our backbone, we query a Mistral Large Language Model (LLM) deployed on Amazon SageMaker. These queries include semantically relevant context retrieved from our FAISS index, enabling our chatbot to provide accurate and context-aware responses.

Sentry image

Hands-on debugging session: instrument, monitor, and fix

Join Lazar for a hands-on session where you’ll build it, break it, debug it, and fix it. You’ll set up Sentry, track errors, use Session Replay and Tracing, and leverage some good ol’ AI to find and fix issues fast.

RSVP here →

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay