DEV Community

Julien Simon
Julien Simon

Posted on • Originally published at julsimon.Medium on

1

Building a Retrieval-Augmented Generation (RAG) Chatbot with LangChain, Hugging Face, and AWS

Building a Retrieval-Augmented Generation (RAG) Chatbot with LangChain, Hugging Face, and AWS

SIn this video, I’ll guide you through the process of creating a Retrieval-Augmented Generation (RAG) chatbot using open-source tools and AWS services, such as LangChain, Hugging Face, FAISS, Amazon SageMaker, and Amazon TextTract.

We begin by working with PDF files in the Energy domain. Our first step involves leveraging Amazon TextTract to extract valuable information from these PDFs. Following the extraction, we break down the text into smaller, more manageable chunks. These chunks are then enriched using a Hugging Face feature extraction model before being organized and stored within a FAISS index for efficient retrieval.

To ensure a seamless workflow, we employ LangChain to orchestrate the entire process. With LangChain as our backbone, we query a Mistral Large Language Model (LLM) deployed on Amazon SageMaker. These queries include semantically relevant context retrieved from our FAISS index, enabling our chatbot to provide accurate and context-aware responses.

Image of Timescale

🚀 pgai Vectorizer: SQLAlchemy and LiteLLM Make Vector Search Simple

We built pgai Vectorizer to simplify embedding management for AI applications—without needing a separate database or complex infrastructure. Since launch, developers have created over 3,000 vectorizers on Timescale Cloud, with many more self-hosted.

Read more

Top comments (0)

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more