1. Solution Overview
The proposed solution is a cloud-native, microservices-based, event-driven architecture designed to handle millions of concurrent users with sub-second response times. The platform leverages AWS managed services to achieve 99.99% availability, horizontal scalability, and global reach while maintaining strong consistency for booking transactions.
Key Business Objectives:
- Handle 10M+ daily active users with <200ms API response times
- Process 1M+ events per second for real-time personalization
- Ensure zero double-bookings through strong consistency guarantees
- Support multi-region deployment for global low-latency access
- Achieve <1 hour RTO and <5 minutes RPO for disaster recovery
Architectural Patterns: Microservices architecture with event-driven communication, CQRS (Command Query Responsibility Segregation) for read/write separation, Lambda architecture for real-time and batch processing, and API Gateway pattern for unified access.
2. Architecture Components
AWS Services & Resources
Compute Layer
-
Amazon EKS (v1.28): Managed Kubernetes for core microservices
- Node Groups: m6i.2xlarge (8 vCPU, 32 GB RAM) for stateless services
- Spot instances for non-critical workloads (70% cost reduction)
- Auto-scaling: 10-100 nodes based on CPU >70% and custom metrics
-
AWS Lambda: Serverless functions for event processing
- Memory: 1024-3096 MB based on function complexity
- Timeout: 30-900 seconds for async operations
- Provisioned concurrency for latency-sensitive functions
-
AWS Fargate: Container orchestration for batch jobs and admin services
- Task definitions: 2-4 vCPU, 8-16 GB memory
Database Layer
-
Amazon Aurora PostgreSQL Global Database (v15.4): Primary transactional database
- Instance type: db.r6g.4xlarge (16 vCPU, 128 GB RAM)
- Multi-AZ: 1 primary + 2 read replicas per region
- Cross-region replicas in 2 additional regions (us-east-1, eu-west-1, ap-southeast-1)
- Storage: Auto-scaling from 10GB to 128TB
-
Amazon DynamoDB Global Tables: User sessions, preferences, and real-time signals
- On-demand capacity mode for unpredictable traffic
- Point-in-time recovery enabled
- DAX cluster (dax.r5.large) for <1ms read latency
-
Amazon ElastiCache for Redis (v7.0): Multi-tier caching
- Cluster mode: cache.r6g.xlarge (4 vCPU, 26.32 GB RAM)
- 3 nodes per shard, 3 shards for horizontal scaling
- Global Datastore for multi-region caching
-
Amazon OpenSearch (v2.11): Search engine for property listings
- Instance type: r6g.2xlarge.search (8 vCPU, 64 GB RAM)
- 3 master nodes, 6 data nodes across 3 AZs
- 500GB EBS gp3 storage per node (16,000 IOPS)
Storage Layer
-
Amazon S3: Object storage for media assets
- Standard tier: Property images, documents
- Intelligent-Tiering: User uploads with lifecycle policies
- Glacier Flexible Retrieval: Archival data >90 days
- Versioning enabled with MFA delete protection
-
Amazon EFS: Shared file system for containerized applications
- Performance mode: General Purpose
- Throughput mode: Elastic (auto-scales)
- 100GB provisioned capacity
Networking Layer
-
Amazon VPC: Multi-tier network architecture
- CIDR: 10.0.0.0/16 (65,536 IPs)
- Public subnets: 10.0.1.0/24, 10.0.2.0/24, 10.0.3.0/24 (per AZ)
- Private app subnets: 10.0.11.0/24, 10.0.12.0/24, 10.0.13.0/24
- Private data subnets: 10.0.21.0/24, 10.0.22.0/24, 10.0.23.0/24
- NAT Gateways: 3 (one per AZ) in public subnets
-
Application Load Balancer (ALB): Layer 7 load balancing
- Internet-facing ALB for external traffic
- Internal ALB for microservices communication
- Sticky sessions with cookie-based routing
- Connection draining: 300 seconds
-
Amazon CloudFront: Global CDN with 450+ edge locations
- Origin: S3 (static assets) and ALB (dynamic content)
- Cache TTL: 86400s (static), 0s (dynamic with smart caching)
- Origin shield enabled for reduced origin load
- Field-level encryption for sensitive data
-
Amazon Route 53: DNS with health checks and failover
- Latency-based routing for global users
- Failover routing to secondary region
- Health checks every 30 seconds
Security Services
-
AWS IAM: Role-based access control
- Service accounts for each microservice with least privilege
- OIDC provider integration for EKS pod identities
- MFA enforcement for console access
-
AWS Secrets Manager: Secrets and credentials management
- Automatic rotation every 30 days
- Encryption with customer-managed KMS keys
-
AWS KMS: Encryption key management
- Customer-managed keys for Aurora, DynamoDB, S3
- Automatic key rotation annually
- CloudHSM integration for high-security requirements
-
AWS WAF: Web application firewall
- Managed rule groups: Core rule set, SQL injection, XSS
- Rate limiting: 2000 requests per 5 minutes per IP
- Geo-blocking for sanctioned countries
-
AWS Shield Advanced: DDoS protection
- 24/7 DDoS response team access
- Cost protection for scaling during attacks
-
Amazon GuardDuty: Threat detection
- Continuous monitoring for malicious activity
- Integration with EventBridge for automated response
-
AWS Security Hub: Centralized security posture
- CIS AWS Foundations Benchmark compliance
- Automated remediation with Lambda
Monitoring & Logging
-
Amazon CloudWatch: Metrics, logs, and alarms
- Metrics: Custom application metrics with 1-minute resolution
- Logs: Centralized logging with 90-day retention
- Alarms: 50+ alarms for critical metrics (CPU, memory, latency, errors)
- Dashboards: Real-time operational dashboards
-
AWS X-Ray: Distributed tracing
- Sampling rate: 10% for normal traffic, 100% for errors
- Service map visualization for dependency analysis
-
AWS CloudTrail: API audit logging
- Multi-region trail enabled
- Log file integrity validation
- S3 lifecycle to Glacier after 90 days
CI/CD Services
-
AWS CodePipeline: Orchestration of deployment pipeline
- Source: GitHub with webhook triggers
- Build stage: CodeBuild for Docker image creation
- Deploy stage: EKS with blue-green deployment
-
AWS CodeBuild: Container image building
- Build spec: Docker multi-stage builds
- Cache: S3-backed for faster builds
- Compute: BUILD_GENERAL1_LARGE (8 GB memory, 4 vCPUs)
-
AWS CodeDeploy: Deployment automation
- Deployment configuration: Blue-green with 10% traffic shifting every 5 minutes
- Automatic rollback on CloudWatch alarm breach
Additional Managed Services
-
Amazon EventBridge: Event bus for microservices communication
- Custom event buses per domain (bookings, properties, users)
- Event archive with 30-day retention
-
Amazon SQS: Asynchronous task queues
- Standard queues for non-critical processing
- FIFO queues for ordered operations (booking confirmation)
- Dead-letter queues with 14-day retention
-
Amazon SNS: Pub/sub notifications
- Topics for email, SMS, and mobile push notifications
- Message filtering for targeted delivery
-
Amazon SES: Transactional email delivery
- Dedicated IP pool for reputation management
- Open and click tracking enabled
-
Amazon Cognito: User authentication and authorization
- User pools: 10M+ users with MFA support
- Identity pools for temporary AWS credentials
- Social login: Google, Facebook, Apple
-
AWS Step Functions: Workflow orchestration
- Booking workflow: Search → Reserve → Payment → Confirm
- Express workflows for high-throughput operations
Infrastructure-as-Code Tools
Terraform (v1.6+): Primary IaC tool for AWS resource provisioning
- Why Terraform: Multi-cloud compatibility, rich ecosystem, state management with S3 backend and DynamoDB locking, extensive AWS provider support, reusable modules for consistency
-
Module Structure:
-
terraform/modules/networking: VPC, subnets, security groups -
terraform/modules/compute: EKS, Lambda, Fargate -
terraform/modules/database: Aurora, DynamoDB, ElastiCache -
terraform/modules/storage: S3, EFS -
terraform/modules/security: IAM roles, KMS, Secrets Manager
-
-
Remote State: S3 bucket
booking-platform-tfstatewith versioning and encryption
Helm (v3.13+): Kubernetes package manager for application deployment
- Charts for each microservice with configurable values
- Shared charts for common patterns (monitoring, ingress)
AWS CDK (TypeScript v2.110+): For complex Step Functions workflows and Lambda functions
- Type safety for infrastructure code
- High-level constructs for patterns
Third-Party Tools/Platforms
Container Orchestration
- Kubernetes v1.28: Container orchestration platform
- Helm Charts: Custom charts for microservices
- Kustomize: Environment-specific overlays (dev, staging, prod)
-
ArgoCD (v2.9+): GitOps continuous delivery
- Automated sync from Git repositories
- Self-healing capabilities
- Multi-cluster management
CI/CD Platforms
-
GitHub Actions: CI pipeline for testing and building
- Workflow: Lint → Test → Security scan → Build → Push to ECR
- Self-hosted runners on EC2 for faster builds
- ArgoCD: CD for Kubernetes deployments
Monitoring & Observability
-
Prometheus (v2.48+): Metrics collection and storage
- Scrape interval: 30 seconds
- Retention: 15 days
- Node exporter, kube-state-metrics for cluster insights
-
Grafana (v10.2+): Visualization and dashboards
- 20+ pre-built dashboards for infrastructure and application metrics
- Alerting integration with PagerDuty and Slack
-
Datadog: APM and log management (alternative/supplementary)
- Distributed tracing across microservices
- Real user monitoring (RUM) for frontend performance
Security & Compliance
-
Trivy: Container image vulnerability scanning
- Integrated in CI pipeline with severity threshold: HIGH
-
Falco: Runtime security monitoring in Kubernetes
- Detects anomalous behavior in containers
-
OPA/Gatekeeper: Policy enforcement in Kubernetes
- Admission controller for policy validation
- Policies for resource limits, image registries, network policies
Message Streaming
-
Apache Kafka on Amazon MSK (v3.6): Event streaming platform
- Cluster: kafka.m5.2xlarge (8 vCPU, 32 GB RAM) × 6 brokers
- Partition: 100 partitions per topic
- Retention: 7 days
- Topics: user-events, booking-events, property-updates, payment-events
Programming Languages & Frameworks
Application Layer
-
Node.js (v20 LTS): User service, search service, recommendation service
- Framework: NestJS for enterprise-grade architecture
- ORM: Prisma for database access with type safety
-
Java (OpenJDK 17): Booking service, payment service
- Framework: Spring Boot 3.2 with Spring Cloud for microservices patterns
- Reactive programming with Project Reactor for high concurrency
-
Python (v3.11): ML/recommendation engine, data processing pipelines
- Framework: FastAPI for high-performance APIs
- Libraries: Pandas, NumPy, scikit-learn, TensorFlow
-
Go (v1.21): API Gateway, notification service (high-performance services)
- Framework: Gin for HTTP routing
- gRPC for inter-service communication
Frontend
- React (v18) with Next.js (v14) for server-side rendering
- TypeScript for type safety
- Redux Toolkit for state management
Scripting & Automation
- Python: AWS Lambda functions, automation scripts
- Bash: Infrastructure maintenance scripts
- TypeScript: AWS CDK infrastructure code
Data Processing
-
Apache Flink (v1.18): Stream processing
- Deployed on EKS with 20 task managers
- Checkpointing every 5 minutes to S3
Hardware/Compute Specifications
EKS Node Groups
General Purpose (Microservices)
- Instance type: m6i.2xlarge
- vCPU: 8, Memory: 32 GB, Network: Up to 12.5 Gbps
- Rationale: Balanced compute/memory for stateless services
- Auto-scaling: 10-100 nodes
- Scale-up: CPU >70% for 3 minutes
- Scale-down: CPU <30% for 10 minutes
- Pod limits: 58 pods per node
Memory-Optimized (Caching/Data Services)
- Instance type: r6i.2xlarge
- vCPU: 8, Memory: 64 GB
- Rationale: High memory for caching layers and data processing
- Auto-scaling: 3-20 nodes
Compute-Optimized (CPU-Intensive Tasks)
- Instance type: c6i.4xlarge
- vCPU: 16, Memory: 32 GB
- Rationale: ML inference, search indexing
- Auto-scaling: 2-15 nodes
Lambda Configurations
- API Functions: 1024 MB, 30s timeout, 1000 concurrent executions
- Event Processors: 2048 MB, 300s timeout, 5000 concurrent executions
- Scheduled Jobs: 3008 MB, 900s timeout, 10 concurrent executions
RDS/Aurora Instances
-
Production: db.r6g.4xlarge
- vCPU: 16, Memory: 128 GB, Network: Up to 10 Gbps
- Connection pool: 500 max connections per instance
- Read Replicas: db.r6g.2xlarge (2 per region)
ElastiCache Clusters
-
Instance: cache.r6g.xlarge
- vCPU: 4, Memory: 26.32 GB
- Cluster: 3 shards × 3 nodes = 9 nodes total
- Max connections: 65,000 per node
OpenSearch Nodes
- Master nodes: r6g.large.search (3 nodes)
-
Data nodes: r6g.2xlarge.search (6 nodes)
- vCPU: 8, Memory: 64 GB, Storage: 500GB gp3 EBS
3. Architecture Diagram
┌─────────────────────────────────────────────────────────────────────────────┐
│ REGION: us-east-1 (Primary) │
│ ┌──────────────────────────────────────────────────────────────────────┐ │
│ │ Global Services Layer │ │
│ │ ┌────────────┐ ┌─────────────┐ ┌──────────────┐ ┌─────────────┐│ │
│ │ │ Route 53 │ │ CloudFront │ │ WAF │ │ Shield ││ │
│ │ │(Latency │ │(CDN: 450+ │ │(Rate Limit: │ │ Advanced ││ │
│ │ │ Routing) │ │ Edge Locs) │ │ 2K req/5min) │ │ (DDoS) ││ │
│ │ └─────┬──────┘ └──────┬──────┘ └──────┬───────┘ └─────────────┘│ │
│ └────────┼─────────────────┼─────────────────┼──────────────────────────┘ │
│ │ │ │ │
│ ┌────────▼─────────────────▼─────────────────▼──────────────────────────┐ │
│ │ VPC: 10.0.0.0/16 (3 AZs) │ │
│ │ │ │
│ │ ┌──────────────────────────────────────────────────────────────┐ │ │
│ │ │ PUBLIC SUBNETS (10.0.1-3.0/24) │ │ │
│ │ │ ┌──────────────────┐ ┌──────────────────┐ ┌────────────┐ │ │ │
│ │ │ │ Internet-facing │ │ NAT Gateway │ │ Bastion │ │ │ │
│ │ │ │ ALB │ │ (3 per AZ) │ │ Host │ │ │ │
│ │ │ │ (HTTPS:443) │ │ │ │ (Mgmt Only)│ │ │ │
│ │ │ └────────┬─────────┘ └────────┬─────────┘ └────────────┘ │ │ │
│ │ └───────────┼──────────────────────┼──────────────────────────┘ │ │
│ │ │ │ │ │
│ │ ┌───────────▼──────────────────────▼────────────────────────────┐ │ │
│ │ │ PRIVATE APP SUBNETS (10.0.11-13.0/24) │ │ │
│ │ │ ┌──────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ Amazon EKS Cluster (k8s v1.28) │ │ │ │
│ │ │ │ ┌─────────────┐ ┌──────────────┐ ┌─────────────────┐ │ │ │ │
│ │ │ │ │ User │ │ Property │ │ Booking │ │ │ │ │
│ │ │ │ │ Service │ │ Service │ │ Service │ │ │ │ │
│ │ │ │ │ (Node.js) │ │ (Node.js) │ │ (Java) │ │ │ │ │
│ │ │ │ │ 3-10 pods │ │ 5-20 pods │ │ 5-30 pods │ │ │ │ │
│ │ │ │ └──────┬──────┘ └──────┬───────┘ └────────┬────────┘ │ │ │ │
│ │ │ │ ┌──────▼──────┐ ┌──────▼───────┐ ┌────────▼────────┐ │ │ │ │
│ │ │ │ │ Search │ │ Payment │ │ Notification │ │ │ │ │
│ │ │ │ │ Service │ │ Service │ │ Service │ │ │ │ │
│ │ │ │ │ (Node.js) │ │ (Java) │ │ (Go) │ │ │ │ │
│ │ │ │ │ 5-15 pods │ │ 3-15 pods │ │ 2-10 pods │ │ │ │ │
│ │ │ │ └──────┬──────┘ └──────┬───────┘ └────────┬────────┘ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │
│ │ │ │ ┌──────▼────────────────▼────────────────────▼────────┐ │ │ │ │
│ │ │ │ │ Internal Application Load Balancer │ │ │ │ │
│ │ │ │ └──────────────────────────────────────────────────────┘ │ │ │ │
│ │ │ └──────────────────────────────────────────────────────────┘ │ │ │
│ │ │ │ │ │
│ │ │ ┌──────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ Lambda Functions (Serverless Layer) │ │ │ │
│ │ │ │ • Event Processors (User Signals Processing) │ │ │ │
│ │ │ │ • Image Processing (Thumbnails, Optimization) │ │ │ │
│ │ │ │ • Scheduled Jobs (Reports, Cleanup) │ │ │ │
│ │ │ │ • Stream Processing (Kafka → DynamoDB) │ │ │ │
│ │ │ └──────────────────────────────────────────────────────────┘ │ │ │
│ │ │ │ │ │
│ │ │ ┌──────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ Event-Driven Architecture Components │ │ │ │
│ │ │ │ ┌────────────────┐ ┌──────────────┐ ┌──────────────┐ │ │ │ │
│ │ │ │ │ EventBridge │ │ SQS │ │ SNS │ │ │ │ │
│ │ │ │ │ (Event Bus) │ │ (Queues) │ │ (Pub/Sub) │ │ │ │ │
│ │ │ │ └────────────────┘ └──────────────┘ └──────────────┘ │ │ │ │
│ │ │ │ ┌────────────────────────────────────────────────────┐ │ │ │ │
│ │ │ │ │ Amazon MSK (Kafka v3.6 - 6 Brokers) │ │ │ │ │
│ │ │ │ │ Topics: user-events, booking-events, payments │ │ │ │ │
│ │ │ │ └────────────────────────────────────────────────────┘ │ │ │ │
│ │ │ └──────────────────────────────────────────────────────────┘ │ │ │
│ │ └─────────────────────────────────────────────────────────────┘ │ │
│ │ │ │
│ │ ┌──────────────────────────────────────────────────────────────┐ │ │
│ │ │ PRIVATE DATA SUBNETS (10.0.21-23.0/24) │ │ │
│ │ │ │ │ │
│ │ │ ┌────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ Aurora PostgreSQL Global Database (v15.4) │ │ │ │
│ │ │ │ Primary: db.r6g.4xlarge (16 vCPU, 128GB) │ │ │ │
│ │ │ │ Read Replicas: 2x db.r6g.2xlarge per region │ │ │ │
│ │ │ │ Cross-region replication: <1s latency │ │ │ │
│ │ │ └────────────────────────────────────────────────────────┘ │ │ │
│ │ │ │ │ │
│ │ │ ┌────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ DynamoDB Global Tables (On-Demand) │ │ │ │
│ │ │ │ • user-sessions (TTL: 24h) │ │ │ │
│ │ │ │ • user-preferences │ │ │ │
│ │ │ │ • user-signals (real-time events) │ │ │ │
│ │ │ │ • booking-state-machine │ │ │ │
│ │ │ │ + DAX Cluster (dax.r5.large - <1ms reads) │ │ │ │
│ │ │ └────────────────────────────────────────────────────────┘ │ │ │
│ │ │ │ │ │
│ │ │ ┌────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ ElastiCache Redis Global Datastore (v7.0) │ │ │ │
│ │ │ │ 3 shards × 3 nodes (cache.r6g.xlarge) │ │ │ │
│ │ │ │ Use cases: Session cache, API cache, Rate limiting │ │ │ │
│ │ │ └────────────────────────────────────────────────────────┘ │ │ │
│ │ │ │ │ │
│ │ │ ┌────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ Amazon OpenSearch Service (v2.11) │ │ │ │
│ │ │ │ Master: 3x r6g.large.search (HA) │ │ │ │
│ │ │ │ Data: 6x r6g.2xlarge.search (500GB gp3 each) │ │ │ │
│ │ │ │ Indices: properties, users, bookings │ │ │ │
│ │ │ └────────────────────────────────────────────────────────┘ │ │ │
│ │ └───────────────────────────────────────────────────────────────┘ │ │
│ │ │ │
│ │ ┌──────────────────────────────────────────────────────────────┐ │ │
│ │ │ Storage & CDN Layer │ │ │
│ │ │ ┌────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ Amazon S3 (Multi-Region) │ │ │ │
│ │ │ │ • booking-platform-media (Images, Videos) │ │ │ │
│ │ │ │ • booking-platform-documents (Contracts, IDs) │ │ │ │
│ │ │ │ • booking-platform-backups (DB dumps, Snapshots) │ │ │ │
│ │ │ │ • booking-platform-logs (CloudWatch, Access logs) │ │ │ │
│ │ │ │ Versioning: Enabled | MFA Delete: Enabled │ │ │ │
│ │ │ │ Lifecycle: Standard → Intelligent-Tiering → Glacier │ │ │ │
│ │ │ └────────────────────────────────────────────────────────┘ │ │ │
│ │ │ │ │ │
│ │ │ ┌────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ Amazon EFS (Shared File System) │ │ │ │
│ │ │ │ Mount targets in each AZ for EKS pods │ │ │ │
│ │ │ │ Performance: General Purpose | Throughput: Elastic │ │ │ │
│ │ │ └────────────────────────────────────────────────────────┘ │ │ │
│ │ └───────────────────────────────────────────────────────────────┘ │ │
│ │ │ │
│ │ ┌──────────────────────────────────────────────────────────────┐ │ │
│ │ │ Security & Identity Services │ │ │
│ │ │ ┌──────────────┐ ┌────────────┐ ┌────────────────────┐ │ │ │
│ │ │ │ Cognito │ │ IAM │ │ Secrets Manager │ │ │ │
│ │ │ │ (User Pools) │ │ (Roles) │ │ (DB Creds, API) │ │ │ │
│ │ │ └──────────────┘ └────────────┘ └────────────────────┘ │ │ │
│ │ │ ┌──────────────┐ ┌────────────┐ ┌────────────────────┐ │ │ │
│ │ │ │ KMS │ │ GuardDuty │ │ Security Hub │ │ │ │
│ │ │ │(CMK for all) │ │(Threat Det)│ │(CIS Compliance) │ │ │ │
│ │ │ └──────────────┘ └────────────┘ └────────────────────┘ │ │ │
│ │ └───────────────────────────────────────────────────────────────┘ │ │
│ │ │ │
│ │ ┌──────────────────────────────────────────────────────────────┐ │ │
│ │ │ Monitoring & Observability Stack │ │ │
│ │ │ ┌────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ CloudWatch (Metrics, Logs, Alarms, Dashboards) │ │ │ │
│ │ │ │ • 50+ alarms (CPU, Memory, Latency, Error Rate) │ │ │ │
│ │ │ │ • Log retention: 90 days │ │ │ │
│ │ │ │ • Custom metrics: 1-min resolution │ │ │ │
│ │ │ └────────────────────────────────────────────────────────┘ │ │ │
│ │ │ ┌────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ Prometheus + Grafana (on EKS) │ │ │ │
│ │ │ │ • 20+ dashboards (Infrastructure + Application) │ │ │ │
│ │ │ │ • Alerting: PagerDuty, Slack integration │ │ │ │
│ │ │ └────────────────────────────────────────────────────────┘ │ │ │
│ │ │ ┌────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ AWS X-Ray (Distributed Tracing) │ │ │ │
│ │ │ │ • Service map visualization │ │ │ │
│ │ │ │ • Sampling: 10% normal, 100% errors │ │ │ │
│ │ │ └────────────────────────────────────────────────────────┘ │ │ │
│ │ └───────────────────────────────────────────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────────┘ │
│ │
│ ┌──────────────────────────────────────────────────────────────────┐ │
│ │ CI/CD Pipeline │ │
│ │ GitHub → GitHub Actions → CodeBuild → ECR → ArgoCD → EKS │ │
│ │ (Source) (Test/Scan) (Build) (Registry) (Deploy) │ │
│ └──────────────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────────────┐
│ SECONDARY REGIONS: eu-west-1, ap-southeast-1 │
│ • Aurora read replicas (cross-region replication <1s) │
│ • DynamoDB Global Tables (bidirectional replication) │
│ • ElastiCache Global Datastore (sub-second replication) │
│ • S3 Cross-Region Replication (CRR) for critical data │
│ • CloudFront edge caching for regional users │
│ • Route 53 latency-based routing to nearest region │
└─────────────────────────────────────────────────────────────────────────────┘
Security Boundaries:
━━━━━━━━━━━━━━━━━━━
• Public Subnets: Internet Gateway, ALB, NAT Gateway
• Private App Subnets: EKS, Lambda (outbound via NAT)
• Private Data Subnets: RDS, ElastiCache, OpenSearch (no internet)
• Security Groups: Least privilege port access
• NACLs: Subnet-level protection
• WAF: Layer 7 filtering at CloudFront/ALB
Data Flow:
- User requests hit Route 53 → CloudFront (cached static content) → WAF filtering → ALB
- ALB routes to appropriate microservice in EKS based on path
- Microservices read from ElastiCache (cache hit) or query Aurora/DynamoDB (cache miss)
- Search queries go to OpenSearch for property listings
- Booking transactions write to Aurora with strong consistency, emit events to EventBridge/Kafka
- Event processors (Lambda/Flink) consume events, update DynamoDB user signals
- Asynchronous tasks (notifications, analytics) processed via SQS/SNS
- Static assets served from S3 via CloudFront with edge caching
4. High Availability & Disaster Recovery
Multi-AZ Deployment Strategy
- Application Layer: EKS nodes distributed across 3 AZs (us-east-1a, us-east-1b, us-east-1c) with pod anti-affinity rules ensuring service replicas run in different AZs
- Database Layer: Aurora Multi-AZ with 1 primary + 2 read replicas, automatic failover in <30 seconds
- Cache Layer: ElastiCache cluster mode with 3 shards, each with nodes in 3 AZs for 99.99% availability
- Load Balancers: ALB cross-zone load balancing enabled, health checks every 30 seconds with 2 consecutive failures triggering deregistration
Auto-Scaling Policies
EKS Cluster Auto-scaling:
- Horizontal Pod Autoscaler (HPA): Target CPU 70%, memory 75%, custom metrics (request rate >1000/sec per pod)
- Cluster Autoscaler: Adds nodes when pods are unschedulable due to resource constraints
- Karpenter (alternative): Provisions nodes in <1 minute based on pod requirements
Target Tracking Policies:
- Booking Service: Scale when p99 latency >500ms
- Search Service: Scale when request queue depth >100
- Payment Service: Scale when active connections >80% of max
Backup and Restore Procedures
Aurora Automated Backups:
- Continuous backup to S3 with point-in-time recovery (PITR) to any second within retention period
- Retention: 35 days
- Backup window: 02:00-04:00 UTC (low-traffic period)
- Cross-region backup copy to us-west-2 for geographic redundancy
DynamoDB Backups:
- Point-in-time recovery enabled (continuous backups for 35 days)
- On-demand backups weekly, retained for 90 days
- Cross-region replication via Global Tables provides automatic DR
S3 Versioning & Lifecycle:
- Object versioning enabled for all buckets
- Cross-Region Replication (CRR) to us-west-2 for critical data
- MFA delete protection on production buckets
EKS etcd Backups:
- Velero for Kubernetes backup to S3
- Daily full backups, retained for 30 days
- Includes persistent volumes, secrets, configmaps
RTO/RPO Targets
| Component | RPO | RTO | Strategy |
|---|---|---|---|
| Aurora Database | <5 minutes | <1 hour | Multi-AZ + PITR + Cross-region replica promotion |
| DynamoDB | <1 minute | <15 minutes | Global Tables with continuous replication |
| ElastiCache | <1 minute | <30 minutes | Multi-AZ cluster with automatic failover |
| EKS Workloads | 0 (stateless) | <15 minutes | Multi-AZ pods + ArgoCD auto-sync redeploy |
| S3 Data | 0 | <5 minutes | Cross-region replication + 99.999999999% durability |
| Overall System | <5 minutes | <1 hour | Regional failover with Route 53 health checks |
Failover Mechanisms
Database Failover:
- Aurora: Automatic failover to standby replica in 30-120 seconds, DNS endpoint remains same
- Global Database: Manual promotion of secondary region in <1 minute for DR scenario
- Connection pooling with retry logic handles transient failures
Application Failover:
- Route 53 health checks monitor ALB endpoint every 30 seconds
- Failure threshold: 3 consecutive failures (90 seconds detection)
- Automatic DNS failover to secondary region (eu-west-1) with 60-second TTL
- Multi-region active-passive with warm standby (10% capacity in secondary)
Automated Healing:
- EKS: Failed pods automatically restarted by kubelet, rescheduled by kube-scheduler
- ALB: Unhealthy targets removed from rotation, health checks every 30 seconds
- Lambda: Automatic retry with exponential backoff for failed invocations
5. Security Implementation
Network Security
Security Groups (Stateful Firewall):
-
sg-alb-public: Port 443 (HTTPS) from 0.0.0.0/0, Port 80 (HTTP redirect) from 0.0.0.0/0 -
sg-eks-nodes: Port 443 from ALB SG, inter-node communication (all ports from same SG), ephemeral ports for outbound responses -
sg-aurora-db: Port 5432 from EKS nodes SG and Lambda SG only -
sg-elasticache: Port 6379 from EKS nodes SG only -
sg-opensearch: Port 443 from EKS nodes SG only -
sg-lambda: Outbound to databases, SQS, DynamoDB (no inbound rules)
Network ACLs (Stateless Subnet Protection):
- Public subnets: Allow inbound 443, 80; allow ephemeral ports (1024-65535) for responses
- Private app subnets: Allow all traffic from public subnets; deny direct internet inbound
- Private data subnets: Allow traffic only from app subnets; deny all internet traffic
AWS WAF Rules:
- AWS Managed Core Rule Set: SQL injection, XSS, LFI protection
- Rate-based rule: 2000 requests per 5 minutes per IP, temporary block for 10 minutes
- Geo-blocking: Block traffic from high-risk countries
- IP reputation list: Block known malicious IPs (updated daily)
- Size constraint: Block requests with body >8KB to prevent DoS
- Custom rule: Block requests without valid JWT token for authenticated endpoints
VPC Flow Logs:
- Enabled on VPC with ALL traffic capture
- Stored in S3 with 90-day retention
- Athena queries for security analysis and threat hunting
IAM Roles and Policies (Least Privilege)
Service Accounts (EKS Pod Identities):
- Each microservice has dedicated IAM role via IRSA (IAM Roles for Service Accounts)
- Booking service role:
arn:aws:iam::ACCOUNT:role/booking-service-role- Permissions: DynamoDB PutItem/GetItem on booking tables, SQS SendMessage to booking queue, SNS Publish to notification topic
- User service role: Limited to Cognito, DynamoDB user tables, S3 profile images bucket
Lambda Execution Roles:
- Separate role per Lambda function with minimal permissions
- Example: Image processor role has S3 GetObject (source bucket), S3 PutObject (processed bucket), no broad S3:* permissions
Human Access:
- No long-term access keys; SSO via AWS IAM Identity Center
- MFA mandatory for console access and sensitive operations
- Break-glass role for emergency access with CloudTrail alerts
Cross-Service Access:
- Aurora enhanced monitoring role: Limited to CloudWatch PutMetricData
- CodeBuild role: ECR push, S3 artifact access (build artifacts bucket only)
Data Encryption
At-Rest Encryption:
- Aurora PostgreSQL: Encrypted with customer-managed KMS key
aurora-cmk, automatic key rotation enabled - DynamoDB: Encryption at rest using AWS-managed keys (transparent), considering CMK for sensitive tables
- S3: Server-side encryption with SSE-KMS using bucket-specific CMK, enforced via bucket policy denying unencrypted uploads
- EBS volumes: All EKS node volumes encrypted with default KMS key
- ElastiCache: At-rest encryption enabled with CMK
- OpenSearch: Encryption at rest via KMS
In-Transit Encryption:
- All inter-service communication via TLS 1.3
- Aurora: SSL/TLS enforced via
rds.force_ssl=1parameter - ElastiCache: TLS mode enabled on all connections
- Load balancers: HTTPS listeners with TLS 1.2+ only, SSL certificate from ACM
- Kafka (MSK): TLS encryption for broker communication and client connections
Field-Level Encryption:
- CloudFront field-level encryption for sensitive form data (credit cards, SSN)
- Application-level encryption for PII using AWS Encryption SDK before storage
Secrets Management
AWS Secrets Manager:
- Database credentials with automatic rotation every 30 days
- API keys for third-party services (payment gateways, email providers)
- JWT signing keys rotated quarterly
- VPC-hosted secret rotation Lambda functions
EKS Secrets:
- External Secrets Operator syncs from Secrets Manager to Kubernetes secrets
- Sealed Secrets for GitOps (secrets encrypted in Git, decrypted in cluster)
- Never commit plaintext secrets to repositories
Compliance Considerations
Standards:
- PCI-DSS Level 1 (payment card data handling)
- SOC 2 Type II (security, availability, confidentiality)
- GDPR compliance (EU user data protection)
Controls:
- Data residency: EU user data stored in eu-west-1 region only
- Right to erasure: Automated data deletion workflow
- Audit logging: All data access logged to CloudTrail (3-year retention)
- Encryption: All data encrypted at rest and in transit
- Access controls: MFA, least privilege, regular access reviews
DDoS Protection Strategy
AWS Shield Advanced:
- Layer 3/4 DDoS protection with 24/7 DRT (DDoS Response Team) access
- Cost protection against infrastructure scaling during attacks
- Real-time attack notifications via SNS
Application Layer Protection:
- WAF rate limiting and bot detection
- CloudFront geo-blocking and origin shield
- Auto-scaling to absorb volumetric attacks (cost implications monitored)
Monitoring:
- CloudWatch metrics for anomalous traffic patterns
- GuardDuty findings for reconnaissance and DDoS attempts
- Automated alarms trigger incident response runbooks ***
6. Well-Architected Framework Alignment
Operational Excellence
Infrastructure as Code: All infrastructure provisioned via Terraform with GitOps workflow; changes peer-reviewed before merge; immutable infrastructure pattern
Monitoring & Observability: CloudWatch dashboards for 50+ metrics, Grafana for application-level insights, X-Ray for distributed tracing with service maps; alerting via PagerDuty with on-call rotation
Automation: CI/CD pipeline fully automated from commit to production; automated scaling policies; self-healing with health checks and pod restarts; chaos engineering with LitmusChaos for resilience testing
Runbooks & Playbooks: Documented incident response procedures for common scenarios (DB failover, cache invalidation, traffic spike); quarterly disaster recovery drills
Security
Identity & Access Management: IAM roles with least privilege; IRSA for pod-level permissions; MFA enforced; no long-term credentials; audit logs retained 3 years
Detective Controls: GuardDuty for threat detection; Security Hub for compliance posture (CIS Benchmarks); VPC Flow Logs analyzed for anomalies; CloudTrail for API auditing
Infrastructure Protection: Multi-layer defense (WAF, Shield, Security Groups, NACLs); private subnets for data tier; bastion host with session manager for admin access; regular vulnerability scanning with AWS Inspector
Data Protection: Encryption at rest (KMS CMK) and in transit (TLS 1.3); secrets rotation every 30 days; field-level encryption for PII; backup encryption; data classification (public, internal, confidential, restricted)
Incident Response: Automated playbooks for common incidents; isolation procedures for compromised instances; forensic capabilities with EBS snapshots and memory dumps
Reliability
Fault Isolation: Multi-AZ architecture with 3 AZs; Aurora failover <30s; stateless application design; bulkheads between services prevent cascading failures
Change Management: Blue-green deployments with traffic shifting; automated rollback on error rate >1%; canary releases for high-risk changes; feature flags for gradual rollout
Failure Handling: Exponential backoff with jitter for retries; circuit breakers (Hystrix pattern) prevent cascading failures; graceful degradation (serve cached results when DB unavailable); timeout budgets on all network calls
Backup Strategy: Aurora PITR (35 days), DynamoDB PITR (35 days), EKS Velero backups, S3 versioning with cross-region replication; tested restore procedures quarterly
Self-Healing: EKS pod restarts, ALB health checks, Lambda automatic retries, Aurora automatic failover, auto-scaling based on health metrics
Performance Efficiency
Right-Sizing: Graviton2 instances (r6g, c6g) for 20% better price-performance; right-sized databases based on CloudWatch metrics; Lambda memory optimization for cost/performance balance
Caching Strategy: Multi-tier caching (CloudFront edge, ElastiCache L2, DynamoDB DAX L3); cache hit ratio >85%; appropriate TTLs per data freshness requirements
CDN Usage: CloudFront with 450+ edge locations; origin shield reduces origin load; static asset optimization (Gzip, Brotli compression); image optimization (WebP format, lazy loading)
Database Optimization: Read replicas for read-heavy workloads; connection pooling (PgBouncer) to handle 10K+ connections; query optimization with EXPLAIN ANALYZE; database indexes on frequently queried columns
Asynchronous Processing: Event-driven architecture with Kafka/EventBridge; SQS for decoupling; Lambda for background jobs; batch processing for reports
Cost Optimization
Resource Optimization: EC2 Spot instances for 70% of non-critical workloads (development, batch jobs); Compute Savings Plans for 30% discount on steady-state compute; Reserved Instances for Aurora (3-year, 40% discount)
Storage Optimization: S3 Intelligent-Tiering automatically moves objects to cost-effective tiers; lifecycle policies archive logs to Glacier after 90 days; EBS gp3 instead of io2 for cost savings
Serverless & Managed Services: Lambda on-demand pricing (pay per invocation); DynamoDB on-demand for unpredictable traffic; Aurora Serverless v2 for development environments
Monitoring & Alerts: AWS Cost Explorer with anomaly detection; budget alerts at 80% threshold; resource tagging for cost allocation; monthly FinOps reviews identify optimization opportunities
Architecture Efficiency: Microservices scale independently (don't over-provision); auto-scaling policies prevent idle resources; scheduled scaling for predictable patterns (scale down nights/weekends)
Estimated Monthly Savings:
- Spot instances: \$15,000/month
- Savings Plans: \$8,000/month
- S3 lifecycle policies: \$3,000/month
- Right-sizing recommendations: \$5,000/month
Sustainability
Resource Efficiency: Graviton2 instances consume 60% less energy per workload; auto-scaling prevents idle resource waste; Lambda pay-per-use model eliminates idle compute
Regional Selection: Primary region us-east-1 has renewable energy commitments; consideration for AWS regions with lower carbon intensity
Minimal Idle Resources: Auto-scaling down to minimum thresholds during low traffic; scheduled shutdown of non-production environments outside business hours; DynamoDB on-demand eliminates provisioned idle capacity
Data Lifecycle: Automated deletion of obsolete data; compression for logs and backups; deduplication in S3 with intelligent tiering
Monitoring: Carbon footprint tracking via AWS Customer Carbon Footprint Tool; sustainability KPIs in executive dashboards
7. Deployment Flow
Step-by-Step Deployment Process
Phase 1: Infrastructure Provisioning (Terraform)
- Initialize Terraform backend: S3 bucket + DynamoDB lock table
- Deploy networking layer: VPC, subnets, route tables, NAT gateways, security groups
- Deploy security layer: KMS keys, IAM roles, Secrets Manager secrets
- Deploy data layer: Aurora cluster, DynamoDB tables, ElastiCache cluster, OpenSearch
- Deploy compute layer: EKS cluster, Lambda functions, ALB
- Deploy monitoring: CloudWatch dashboards, alarms, SNS topics
- Deploy storage: S3 buckets with policies, EFS file system
- Output: Terraform state stored in S3, infrastructure endpoints available
Phase 2: Kubernetes Setup
- Configure kubectl with EKS cluster credentials
- Install core add-ons: AWS Load Balancer Controller, EBS CSI driver, EFS CSI driver
- Install monitoring stack: Prometheus, Grafana, metrics-server
- Install security tools: Falco, OPA Gatekeeper
- Configure IRSA (IAM Roles for Service Accounts) for each microservice
- Create namespaces: production, staging, monitoring, ingress
Phase 3: ArgoCD Setup (GitOps)
- Install ArgoCD in
argocdnamespace - Connect to GitHub repositories (infrastructure, applications)
- Create ArgoCD Applications for each microservice
- Configure sync policies: automated sync, self-heal, prune
- Enable notifications to Slack for deployment status
Phase 4: Application Deployment
- Developer commits code to GitHub feature branch
- GitHub Actions triggered: Lint → Unit tests → Integration tests → Security scan (Trivy)
- Merge to main branch triggers build phase
- CodeBuild builds Docker images, tags with Git commit SHA and semantic version
- Push images to Amazon ECR with vulnerability scanning
- Update Kubernetes manifests in GitOps repository with new image tags
- ArgoCD detects manifest changes, syncs to EKS cluster
- Blue-green deployment: New version deployed alongside old version
Phase 5: Traffic Shifting & Validation
- New pods pass readiness probes (HTTP GET /health returns 200)
- Smoke tests executed against blue environment (new version)
- Traffic gradually shifted: 10% → 25% → 50% → 100% over 30 minutes
- Monitor key metrics during shift: Error rate <0.1%, p99 latency <500ms, throughput stable
- If metrics breach thresholds, automatic rollback to green (old version)
- If validation passes, 100% traffic to blue, green pods terminated after 1-hour soak period
CI/CD Pipeline Architecture
┌─────────────┐ ┌──────────────┐ ┌─────────────┐ ┌──────────┐
│ GitHub │────▶│GitHub Actions│────▶│ CodeBuild │────▶│ ECR │
│ (Source) │ │ (CI Pipeline)│ │(Docker Build)│ │(Registry)│
└─────────────┘ └──────────────┘ └─────────────┘ └────┬─────┘
│ │
│ │
┌──────▼────────┐ │
│ Test Suite │ │
│ • Unit Tests │ │
│ • Integration │ │
│ • Security │ │
│ Scan (Trivy)│ │
└───────────────┘ │
│
┌────────────────────────────────────────────────────────────────▼────┐
│ GitOps Repository │
│ • Kubernetes manifests (YAML) │
│ • Helm charts │
│ • Kustomize overlays (dev, staging, prod) │
│ • Image tags updated by CI pipeline │
└────────────────────────────────────┬────────────────────────────────┘
│
│
┌────────▼─────────┐
│ ArgoCD │
│ (CD Pipeline) │
│ • Auto-sync │
│ • Self-heal │
│ • Health checks │
└────────┬─────────┘
│
│
┌──────────────▼──────────────┐
│ Amazon EKS │
│ • Blue-Green Deployment │
│ • Progressive Traffic Shift │
│ • Automated Rollback │
└─────────────────────────────┘
Pipeline Stages:
- Source: GitHub webhook triggers on push/PR
- Lint: ESLint (Node.js), Checkstyle (Java), Black (Python)
- Test: Jest (unit), Testcontainers (integration), 80% code coverage required
- Security Scan: Trivy (images), SonarQube (code quality), Snyk (dependencies)
- Build: Multi-stage Docker builds, layer caching, image size optimization
- Push: ECR with immutable tags, vulnerability scan on push
- Update Manifests: Automated PR to GitOps repo with new image tag
- Deploy: ArgoCD syncs, blue-green strategy with Argo Rollouts
- Verify: Smoke tests, metric validation, canary analysis
- Promote/Rollback: Automatic decision based on success criteria
Blue-Green Deployment Strategy
Implementation with Argo Rollouts:
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
name: booking-service
spec:
replicas: 10
strategy:
blueGreen:
activeService: booking-service-active
previewService: booking-service-preview
autoPromotionEnabled: false # Manual approval for prod
scaleDownDelaySeconds: 3600 # Keep old version 1 hour
prePromotionAnalysis:
templates:
- templateName: success-rate
- templateName: latency-check
template:
spec:
containers:
- name: booking-service
image: ECR_REPO/booking-service:NEW_TAG
Traffic Shifting:
- Minute 0: Deploy blue (new version), green (old version) at 100% traffic
- Minute 5: Blue at 10% traffic, validate error rate <0.1%, p99 <500ms
- Minute 10: Blue at 25% traffic, compare metrics blue vs green
- Minute 15: Blue at 50% traffic, full feature validation
- Minute 25: Blue at 75% traffic, monitor for 5 minutes
- Minute 30: Blue at 100% traffic, green on standby
- Minute 90: Terminate green pods if no issues detected
Rollback Procedures
Automated Rollback Triggers:
- Error rate >0.5% for 2 consecutive minutes
- p99 latency >1000ms for 3 minutes
- 5xx response rate >1% sustained
- Custom metric breach (booking success rate <99%)
Rollback Execution:
- ArgoCD detects metric breach via Prometheus queries
- Traffic immediately shifted back to green (old version)
- Blue pods scaled down to 0
- Incident created in PagerDuty, on-call engineer notified
- Post-incident review scheduled within 24 hours
Manual Rollback:
kubectl argo rollouts abort booking-service -n production
kubectl argo rollouts undo booking-service -n production
Database Rollback (Complex):
- Backward-compatible schema migrations prevent need for rollback
- If required, restore from Aurora PITR to specific timestamp
- Coordinated application + database rollback tested in staging
8. Monitoring & Operations
Key Metrics to Monitor
Application Metrics:
| Metric | Threshold | Action |
|---|---|---|
| HTTP 5xx error rate | >0.5% for 2 min | Alert P1, investigate immediately |
| HTTP 4xx error rate | >5% for 5 min | Alert P2, check for API changes |
| API p50 latency | >200ms | Alert P3, investigate caching |
| API p99 latency | >500ms | Alert P2, check database queries |
| API p99.9 latency | >2000ms | Alert P1, potential outage |
| Request throughput | <50% of baseline | Alert P2, traffic drop investigation |
| Booking success rate | <99% | Alert P1, critical business impact |
| Search result latency | >100ms | Alert P3, OpenSearch performance |
| Payment success rate | <99.5% | Alert P1, revenue impact |
Infrastructure Metrics:
| Metric | Threshold | Action |
|---|---|---|
| EKS node CPU utilization | >80% for 5 min | Auto-scale nodes, alert P3 |
| EKS node memory utilization | >85% for 3 min | Auto-scale nodes, alert P2 |
| Pod restart count | >3 restarts in 10 min | Alert P2, check logs |
| Aurora CPU utilization | >75% sustained | Alert P2, consider scaling |
| Aurora connections | >80% of max | Alert P2, check connection pooling |
| Aurora replica lag | >1 second | Alert P3, check replication |
| DynamoDB throttled requests | >0 | Alert P2, increase capacity |
| ElastiCache cache hit rate | <80% | Alert P3, review cache strategy |
| ElastiCache evictions | >100/min | Alert P2, increase cache size |
| OpenSearch cluster status | Red | Alert P1, potential data loss |
| OpenSearch JVM memory | >85% | Alert P2, heap size tuning |
| S3 4xx errors | >1% of requests | Alert P3, permission issues |
| ALB target response time | >500ms | Alert P2, investigate backends |
| ALB unhealthy host count | >0 | Alert P2, check target health |
Business Metrics:
| Metric | Threshold | Action |
|---|---|---|
| Bookings per minute | <80% of forecast | Alert P2, potential issue |
| Property search queries | Sudden 50% drop | Alert P1, investigate search |
| User registration rate | <50% of baseline | Alert P3, check signup flow |
| Average booking value | -20% deviation | Alert P3, pricing review |
| Cancellation rate | >5% | Alert P2, check service quality |
Alerting Thresholds
Severity Levels:
- P1 (Critical): Immediate page to on-call, <15 min response, customer-impacting
- P2 (High): Slack alert + email, <1 hour response, potential customer impact
- P3 (Medium): Email alert, <4 hours response, operational concern
- P4 (Low): Dashboard notification, next business day, informational
Alert Routing:
- P1 alerts → PagerDuty (voice call + SMS) → On-call engineer
- P2 alerts → Slack #incidents channel + PagerDuty (push notification)
- P3 alerts → Slack #monitoring channel + Email
- P4 alerts → Dashboard annotation only
On-Call Rotation:
- 24/7 coverage with 1-week shifts
- Primary and secondary on-call engineers
- Automatic escalation after 5 minutes if no acknowledgment
Log Aggregation Strategy
Centralized Logging Architecture:
Microservices → Fluent Bit (DaemonSet) → CloudWatch Logs → S3 Archive
↘
OpenSearch for search/analysis
Log Categories:
- Application Logs: INFO/WARN/ERROR from microservices, structured JSON format
- Access Logs: ALB logs (HTTP requests, response codes, latency), S3 access logs
- Audit Logs: CloudTrail (API calls), Database audit logs (connection, query logs)
- Security Logs: VPC Flow Logs, WAF logs, GuardDuty findings
Log Retention:
- CloudWatch Logs: 90 days (operational queries)
- S3 Archive: 7 years (compliance, compressed with Gzip)
- OpenSearch: 30 days (fast search and analysis)
Log Format (Structured JSON):
{
"timestamp": "2025-12-11T20:09:00.000Z",
"level": "ERROR",
"service": "booking-service",
"pod": "booking-service-7d8f9c-abc12",
"trace_id": "1-5f8a2b3c-4d5e6f7g8h9i0j1k",
"user_id": "usr_123456",
"booking_id": "bkg_789012",
"error_type": "DatabaseConnectionError",
"message": "Failed to acquire connection from pool",
"stack_trace": "...",
"context": {
"db_host": "aurora-cluster.xyz.us-east-1.rds.amazonaws.com",
"retry_count": 3
}
}
Log Analysis Queries:
- Error trend analysis by service
- P99 latency per endpoint
- User journey tracking via trace_id
- Security anomaly detection (failed auth attempts, unusual access patterns)
Dashboard Requirements
Executive Dashboard (Business KPIs):
- Real-time bookings per minute (line chart)
- Total daily revenue (gauge)
- Active users (current count)
- Conversion funnel: Searches → Views → Bookings (sankey diagram)
- Geographic distribution (map visualization)
- Top performing properties (table)
- System health score (composite metric: availability × performance)
Operations Dashboard (Infrastructure):
- Cluster health: Node count, pod count, resource utilization
- Database performance: CPU, connections, replication lag, IOPS
- Cache metrics: Hit rate, evictions, memory usage
- API performance: Request rate, latency percentiles, error rate
- Cost tracker: Daily spend by service (EC2, RDS, data transfer)
Service-Specific Dashboards:
- Booking Service: Booking rate, success rate, payment failures, step function executions
- Search Service: Query rate, OpenSearch latency, cache hit rate, result relevance score
- User Service: Registrations, logins, profile updates, Cognito metrics
- Notification Service: Email/SMS sent, delivery rate, bounce rate, queue depth
SLA Dashboard:
- Availability: 99.99% target (43.2 minutes downtime/month allowed)
- Latency: p99 <500ms target
- Error rate: <0.1% target
- Time to resolution: P1 incidents resolved <1 hour
Incident Response Workflow
Detection Phase:
- Alert triggered by CloudWatch/Prometheus alarm
- PagerDuty creates incident, pages on-call engineer
- Automated enrichment: Recent deployments, similar past incidents, runbook links
Response Phase:
- On-call acknowledges alert within 5 minutes (or escalates to secondary)
- Join incident Slack channel (auto-created: #incident-YYYY-MM-DD-NNN)
- Execute initial triage runbook: Check dashboards, review logs, assess blast radius
- Declare severity: SEV1 (critical, all hands), SEV2 (major), SEV3 (minor)
- For SEV1: Page incident commander, create Zoom bridge, notify leadership
Mitigation Phase:
- Implement immediate mitigation: Rollback deployment, scale resources, failover region
- Monitor key metrics for improvement
- Update incident channel every 15 minutes with status
- External communication if customer-facing (status page update)
Resolution Phase:
- Validate all metrics returned to normal
- Monitor for 30 minutes to ensure stability
- Mark incident as resolved in PagerDuty
- Schedule post-incident review within 24 hours
Post-Incident Review:
- Blameless postmortem document
- Timeline of events with metric screenshots
- Root cause analysis (5 Whys methodology)
- Action items with owners and due dates
- Runbook updates to prevent recurrence
9. Cost Estimation
Monthly Cost Breakdown - Development Environment
| Service | Configuration | Units | Unit Cost | Monthly Cost |
|---|---|---|---|---|
| Compute | ||||
| EKS Control Plane | Per cluster | 1 | \$73 | \$73 |
| EC2 (m6i.large nodes) | 8 vCPU, 32GB | 3 nodes | \$0.096/hr × 730hr | \$210 |
| Lambda | 1GB, 100K invocations | - | \$0.20/1M + compute | \$50 |
| Database | ||||
| Aurora PostgreSQL | db.r6g.large | 1 instance | \$0.26/hr × 730hr | \$190 |
| DynamoDB | On-demand, 10GB | - | \$1.25/GB + requests | \$30 |
| ElastiCache | cache.r6g.large | 1 node | \$0.252/hr × 730hr | \$184 |
| Storage | ||||
| S3 Standard | 100GB | - | \$0.023/GB | \$2.30 |
| EBS gp3 | 200GB total | - | \$0.08/GB | \$16 |
| Networking | ||||
| ALB | 1 ALB | - | \$0.0225/hr × 730hr | \$16.43 |
| NAT Gateway | 1 NAT | - | \$0.045/hr × 730hr | \$32.85 |
| Data Transfer | 50GB out | - | \$0.09/GB | \$4.50 |
| Monitoring | ||||
| CloudWatch | Logs, metrics | - | - | \$30 |
| Total Dev Environment | ~\$839/month |
Monthly Cost Breakdown - Production Environment
| Service | Configuration | Units | Unit Cost | Monthly Cost |
|---|---|---|---|---|
| Compute | ||||
| EKS Control Plane | Per cluster | 1 | \$73 | \$73 |
| EC2 On-Demand | m6i.2xlarge | 10 nodes | \$0.384/hr × 730hr | \$2,803 |
| EC2 Spot Instances | m6i.2xlarge, 70% discount | 20 nodes | \$0.115/hr × 730hr | \$1,679 |
| Lambda | 1M invocations, 2GB avg | - | Compute charges | \$350 |
| Fargate | 4 vCPU, 8GB tasks | 5 tasks | \$0.12/hr × 730hr | \$438 |
| Database | ||||
| Aurora PostgreSQL (Primary) | db.r6g.4xlarge | 1 writer | \$1.04/hr × 730hr | \$759 |
| Aurora Read Replicas | db.r6g.2xlarge | 2 replicas | \$0.52/hr × 730hr × 2 | \$759 |
| Aurora Storage | 500GB, I/O | - | \$0.10/GB + I/O | \$150 |
| Aurora Cross-Region | 2 regions | 2 replicas | \$0.52/hr × 730hr × 2 | \$759 |
| DynamoDB | On-demand, 200GB | - | \$1.25/GB + 10M writes | \$450 |
| ElastiCache Redis | cache.r6g.xlarge | 9 nodes (3×3) | \$0.503/hr × 730hr × 9 | \$3,303 |
| ElastiCache Global | Cross-region | 6 nodes | \$0.503/hr × 730hr × 6 | \$2,203 |
| OpenSearch | r6g.2xlarge.search | 9 nodes total | \$0.524/hr × 730hr × 9 | \$3,442 |
| OpenSearch Storage | 4.5TB EBS gp3 | - | \$0.08/GB × 4500 | \$360 |
| Storage | ||||
| S3 Standard | 5TB | 5000GB | \$0.023/GB | \$115 |
| S3 Intelligent-Tiering | 10TB | 10000GB | \$0.021/GB avg | \$210 |
| S3 Glacier | 20TB archive | 20000GB | \$0.004/GB | \$80 |
| S3 Requests | GET/PUT | - | - | \$50 |
| EBS gp3 | 3TB total (nodes) | 3000GB | \$0.08/GB | \$240 |
| EFS | 100GB | - | \$0.30/GB | \$30 |
| Networking | ||||
| ALB | 2 ALBs | - | \$0.0225/hr × 730hr × 2 | \$32.85 |
| NLB (internal) | 1 NLB | - | \$0.0225/hr × 730hr | \$16.43 |
| NAT Gateway | 3 NAT (per AZ) | - | \$0.045/hr × 730hr × 3 | \$98.55 |
| NAT Data Processing | 5TB | 5000GB | \$0.045/GB | \$225 |
| CloudFront | 10TB transfer | - | \$0.085/GB avg | \$850 |
| CloudFront Requests | 100M requests | - | \$0.0075/10K | \$75 |
| Route 53 | Hosted zone, queries | - | - | \$50 |
| Data Transfer Out | 15TB inter-region | 15000GB | \$0.02/GB | \$300 |
| Security | ||||
| WAF | Web ACL, rules | - | \$5 + \$1/rule × 10 | \$15 |
| Shield Advanced | DDoS protection | 1 | \$3,000 | \$3,000 |
| Secrets Manager | 50 secrets | - | \$0.40/secret | \$20 |
| GuardDuty | Data analyzed | - | - | \$50 |
| Messaging | ||||
| Amazon MSK | kafka.m5.2xlarge | 6 brokers | \$0.42/hr × 730hr × 6 | \$1,839 |
| MSK Storage | 2TB EBS per broker | 12TB | \$0.10/GB | \$1,200 |
| SQS | 100M requests | - | \$0.40/1M | \$40 |
| SNS | 10M notifications | - | \$0.50/1M | \$5 |
| EventBridge | 50M events | - | \$1/1M | \$50 |
| Monitoring & Operations | ||||
| CloudWatch Logs | 500GB ingestion | - | \$0.50/GB | \$250 |
| CloudWatch Metrics | Custom metrics | - | \$0.30/metric | \$150 |
| CloudWatch Alarms | 100 alarms | - | \$0.10/alarm | \$10 |
| X-Ray | 10M traces | - | \$5/1M | \$50 |
| CloudTrail | Multi-region | 1 trail | - | \$2 |
| CI/CD | ||||
| CodeBuild | 1000 build mins | - | \$0.005/min | \$5 |
| ECR Storage | 500GB images | - | \$0.10/GB | \$50 |
| Additional Services | ||||
| Cognito | 100K MAU | - | \$0.0055/MAU (>50K) | \$275 |
| SES | 100K emails | - | \$0.10/1K | \$10 |
| Step Functions | 10K executions | - | \$0.025/1K | \$0.25 |
| Backup & DR | ||||
| Automated Backups | Aurora, DynamoDB | - | - | \$200 |
| S3 Cross-Region Replication | 2TB/month | - | \$0.02/GB | \$40 |
| Total Production Environment | ~\$28,050/month |
Cost Optimization Recommendations
Immediate Savings (0-30 days):
- Compute Savings Plans (3-year): Commit to \$1,500/month compute usage → Save 40% (\$7,200/year)
- Aurora Reserved Instances (1-year): Reserve db.r6g instances → Save 35% (\$10,000/year)
- S3 Lifecycle Policies: Auto-tier infrequently accessed data → Save \$1,500/month
- Right-size EKS Nodes: Analyze CPU/memory usage, downsize over-provisioned nodes → Save \$800/month
- Remove Unused EBS Snapshots: Automated cleanup of snapshots >90 days → Save \$300/month
Total Immediate Savings: ~\$4,100/month (\$49,200/year)
Medium-Term Optimizations (30-90 days):
- Increase Spot Instance Usage: Expand to 80% spot for stateless workloads → Save \$600/month
- ElastiCache Reserved Nodes: 3-year commitment → Save 45% (\$1,800/month)
- CloudFront Optimization: Enable Brotli compression, optimize cache hit rate to 95% → Save \$200/month
- Database Query Optimization: Reduce Aurora I/O by 40% through query tuning → Save \$500/month
- Lambda Memory Optimization: Right-size Lambda memory allocations → Save \$150/month
Total Medium-Term Savings: ~\$3,250/month (\$39,000/year)
Long-Term Strategies (90+ days):
- Multi-Region Optimization: Evaluate actual DR usage, consider active-active vs warm standby → Potential \$3,000/month
- Graviton3 Migration: Upgrade to Graviton3 instances for 25% better price-performance → Save \$800/month
- Aurora Serverless v2: Use for non-production environments → Save \$400/month
- Data Archival Strategy: Aggressive archival to Glacier Deep Archive → Save \$500/month
Total Long-Term Savings: ~\$4,700/month (\$56,400/year)
Total Optimized Production Cost: ~\$28,050 - \$12,050 = \$16,000/month
Cost Allocation Tags
Environment: production | staging | development
Service: booking | search | user | payment | notification
Team: platform | backend | data | security
CostCenter: engineering | infrastructure | security
Project: booking-platform-v2
Monthly Cost Summary
| Environment | Original Cost | Optimized Cost | Annual Cost (Optimized) |
|---|---|---|---|
| Development | \$839 | \$600 | \$7,200 |
| Staging | \$3,500 | \$2,500 | \$30,000 |
| Production (Primary) | \$28,050 | \$16,000 | \$192,000 |
| Production (DR Regions) | \$8,000 | \$5,000 | \$60,000 |
| Total | \$40,389/month | \$24,100/month | \$289,200/year |
10. Implementation Roadmap
Phase 1: Foundation (Weeks 1-4)
Week 1-2: Infrastructure Setup
- Set up AWS organization, accounts (prod, staging, dev), consolidated billing
- Configure IAM Identity Center for SSO, create baseline IAM roles
- Establish Terraform repository structure, initialize remote state backend
- Deploy networking layer: VPC, subnets, NAT gateways, security groups across 3 AZs
- Configure Route 53 hosted zones, register SSL certificates in ACM
- Deliverable: Base infrastructure in dev environment, Terraform modules documented
Week 3-4: Security & Compliance Foundation
- Deploy KMS customer-managed keys for encryption
- Configure AWS Config rules for compliance monitoring
- Enable CloudTrail multi-region trail, GuardDuty, Security Hub
- Set up Secrets Manager with initial secrets (placeholders)
- Implement baseline IAM policies and service roles
- Configure VPC Flow Logs to S3
- Deliverable: Security baseline passing CIS Benchmark, compliance dashboard
Phase 2: Data Layer (Weeks 5-7)
Week 5: Database Provisioning
- Deploy Aurora PostgreSQL cluster with Multi-AZ configuration
- Set up automated backups, point-in-time recovery
- Create database schemas, apply initial migrations
- Configure connection pooling (PgBouncer)
- Deliverable: Aurora cluster operational with connection from bastion host
Week 6: NoSQL & Caching
- Deploy DynamoDB tables with on-demand capacity
- Configure DynamoDB streams for event processing
- Deploy ElastiCache Redis cluster in cluster mode
- Set up DAX cluster for DynamoDB acceleration
- Deploy OpenSearch cluster with master/data node separation
- Deliverable: All data stores provisioned, basic CRUD operations tested
Week 7: Data Integration
- Configure cross-region replication: Aurora Global Database, DynamoDB Global Tables
- Set up MSK (Kafka) cluster with initial topics
- Deploy data migration scripts for existing data (if applicable)
- Performance testing: Database load tests, cache hit rate validation
- Deliverable: Data layer achieving RTO/RPO targets, cross-region replication validated
Phase 3: Compute & Application Layer (Weeks 8-12)
Week 8-9: EKS Cluster Setup
- Deploy EKS cluster with managed node groups
- Install core add-ons: ALB controller, EBS CSI, EFS CSI, Cluster Autoscaler
- Configure IRSA for pod-level IAM permissions
- Deploy monitoring stack: Prometheus, Grafana with initial dashboards
- Set up internal ALB for service mesh communication
- Deliverable: EKS cluster operational with demo application deployed
Week 10-11: Microservices Deployment
- Containerize all microservices with multi-stage Docker builds
- Create Helm charts for each service with configurable values
- Deploy services in dev environment: User, Property, Booking, Search, Payment, Notification
- Configure service-to-service authentication (JWT, mTLS)
- Implement health check endpoints, readiness/liveness probes
- Deliverable: All microservices deployed, inter-service communication validated
Week 12: Serverless Components
- Deploy Lambda functions for event processing, image processing, scheduled jobs
- Configure API Gateway for external API access (if needed)
- Set up Step Functions for booking workflow orchestration
- Deploy SQS queues, SNS topics for async communication
- Configure EventBridge rules for event routing
- Deliverable: Event-driven architecture functional, end-to-end booking flow operational
Phase 4: CI/CD & GitOps (Weeks 13-14)
Week 13: CI Pipeline
- Set up GitHub Actions workflows: Lint, test, security scan, build
- Configure CodeBuild for Docker image builds
- Create ECR repositories with lifecycle policies
- Integrate Trivy for container vulnerability scanning
- Set up SonarQube for code quality gates
- Deliverable: Automated CI pipeline from commit to ECR push
Week 14: CD Pipeline
- Install ArgoCD in EKS cluster
- Create GitOps repository structure with Kustomize overlays
- Configure ArgoCD applications for all microservices
- Implement blue-green deployment strategy with Argo Rollouts
- Set up automated rollback triggers based on CloudWatch metrics
- Deliverable: GitOps-based CD pipeline with automated deployments
Phase 5: Observability & Operations (Weeks 15-16)
Week 15: Monitoring & Alerting
- Configure CloudWatch dashboards: Executive, Operations, Service-specific
- Create CloudWatch alarms for critical metrics (50+ alarms)
- Set up PagerDuty integration with on-call schedules
- Deploy X-Ray for distributed tracing
- Configure log aggregation with Fluent Bit to CloudWatch Logs
- Deliverable: Complete observability stack, on-call rotation active
Week 16: Operational Readiness
- Document runbooks for common incidents (DB failover, cache invalidation, etc.)
- Create incident response procedures, postmortem templates
- Conduct tabletop disaster recovery exercise
- Performance testing: Load tests simulating 10K concurrent users
- Chaos engineering: Pod deletion, AZ failure simulation with LitmusChaos
- Deliverable: Operations team trained, runbooks validated through simulations
Phase 6: Performance & Optimization (Weeks 17-18)
Week 17: Performance Tuning
- Database optimization: Query analysis with EXPLAIN, index creation
- Cache warming strategies, cache invalidation patterns
- CDN configuration: CloudFront distribution with optimal TTLs
- API optimization: Response compression, pagination, rate limiting
- OpenSearch index optimization, query tuning
- Deliverable: Performance targets met (p99 <500ms, 99.99% availability)
Week 18: Cost Optimization
- Implement Savings Plans and Reserved Instance purchases
- Configure S3 lifecycle policies for automatic tiering
- Right-size EKS nodes based on actual usage patterns
- Enable Spot instance auto-scaling groups
- Set up AWS Cost Explorer with budget alerts
- Deliverable: 30% cost reduction achieved, FinOps dashboard operational
Phase 7: Multi-Region & DR (Weeks 19-20)
Week 19: Secondary Region Deployment
- Deploy infrastructure to eu-west-1 and ap-southeast-1 using Terraform
- Configure cross-region replication for all data stores
- Set up Route 53 health checks and failover routing
- Deploy warm standby (10% capacity) in secondary regions
- Deliverable: Multi-region architecture operational, data replication validated
Week 20: DR Testing
- Execute full disaster recovery drill: Primary region failure simulation
- Validate RTO/RPO targets through actual failover
- Test data integrity after cross-region promotion
- Document lessons learned, update DR procedures
- Conduct security audit, penetration testing
- Deliverable: DR capabilities proven, security audit passed
Phase 8: Go-Live Preparation (Weeks 21-22)
Week 21: Production Hardening
- Enable AWS Shield Advanced for DDoS protection
- Configure WAF rules tuned to production traffic patterns
- Implement rate limiting, bot detection
- Set up real user monitoring (RUM) for frontend performance
- Conduct final security review, compliance validation
- Deliverable: Production environment hardened, compliance certifications obtained
Week 22: Go-Live & Hypercare
- Execute blue-green cutover from legacy system (if applicable)
- Gradual traffic migration: 10% → 50% → 100% over 1 week
- 24/7 war room during initial launch week
- Monitor key metrics continuously, rapid iteration on issues
- Collect user feedback, prioritize post-launch improvements
- Deliverable: Production launch successful, system stable under load
Post-Launch: Continuous Improvement (Ongoing)
Month 2-3:
- Feature velocity optimization: Reduce deployment time, increase release frequency
- Advanced observability: Implement SLIs, SLOs, error budgets
- Cost optimization sprint: Identify and eliminate waste
- Performance benchmarking against competitors
Month 4-6:
- Multi-region active-active deployment for global scale
- Advanced ML/personalization features leveraging real-time data
- Platform engineering: Self-service infrastructure for developers
- Automated remediation for common incidents
Critical Path Items
- Weeks 1-4: Infrastructure foundation (blocker for all subsequent work)
- Weeks 5-7: Data layer (prerequisite for application deployment)
- Weeks 8-12: Application layer (core product functionality)
- Weeks 15-16: Observability (required for production readiness)
- Week 20: DR validation (compliance requirement for launch)
Team Skill Requirements
Platform/Infrastructure Team (3-4 engineers):
- AWS Solutions Architect certification (minimum Associate, preferred Professional)
- Strong Terraform/IaC experience (2+ years)
- Kubernetes administration (CKA certification preferred)
- Networking fundamentals (VPC, subnets, routing, load balancing)
- Security best practices (IAM, encryption, compliance)
Backend Development Team (6-8 engineers):
- Proficiency in Node.js, Java, Python, or Go
- Microservices architecture patterns
- Database design (SQL and NoSQL)
- API design (RESTful, gRPC)
- Event-driven architecture experience
DevOps/SRE Team (2-3 engineers):
- CI/CD pipeline design and implementation
- GitOps methodologies (ArgoCD experience preferred)
- Observability tools (Prometheus, Grafana, CloudWatch)
- Incident response and on-call experience
- Chaos engineering practices
Security Engineer (1-2 engineers):
- AWS security services (IAM, KMS, WAF, GuardDuty)
- Compliance frameworks (PCI-DSS, SOC 2, GDPR)
- Container security, vulnerability management
- Security automation and policy-as-code
Data Engineer (1-2 engineers):
- Database administration (PostgreSQL, DynamoDB)
- Data pipeline design (Kafka, streaming)
- Performance optimization and query tuning
- Backup and recovery procedures
Migration Strategy (If Applicable)
Pre-Migration Phase:
- Data assessment: Volume, relationships, dependencies
- Application inventory: Services, APIs, integrations
- Define migration waves by service criticality
Migration Approach: Strangler Fig Pattern
- Deploy new platform alongside legacy system
- Implement API gateway routing: New users → new platform, existing users → legacy
- Gradual data synchronization: Bidirectional sync during transition period
- Feature parity validation: Ensure all legacy features available in new platform
- Traffic cutover: Incrementally route users to new platform (10% weekly increases)
- Legacy decommission: After 100% traffic migrated and 30-day soak period
Data Migration:
- Use AWS Database Migration Service (DMS) for continuous replication
- Validation: Row counts, checksum comparisons, sample data verification
- Rollback plan: DNS cutover back to legacy if critical issues detected
11. Assumptions & Prerequisites
Traffic/User Load Assumptions
- Daily Active Users (DAU): 10 million users
- Peak Concurrent Users: 500,000 simultaneous connections
- API Request Rate: 100,000 requests/second (peak), 30,000 req/sec (average)
- Booking Rate: 5,000 bookings/minute during peak hours
- Search Queries: 50,000 searches/minute
- User Session Duration: Average 15 minutes
- Geographic Distribution: 40% North America, 35% Europe, 20% Asia, 5% other regions
- Traffic Pattern: 3x daily peak vs off-peak, 2x weekend vs weekday traffic
- Seasonality: 5x traffic during holiday seasons (Dec, Jul-Aug)
Data Volume Assumptions
- Property Listings: 5 million active properties, growing 10% annually
- User Accounts: 50 million registered users, 20% active monthly
- Bookings: 100 million bookings annually (8.3M per month)
- Images: 50 million property images, 2-5 MB average size (150TB total)
- Database Size: 2TB relational data (Aurora), 5TB NoSQL data (DynamoDB)
- Log Volume: 500GB logs/day (CloudWatch), compressed to 50GB/day in S3
- Search Index: 10GB OpenSearch indices for property search
- Cache Memory: 150GB active dataset in ElastiCache
- Event Throughput: 1 million events/second during peak (Kafka/EventBridge)
Availability Requirements
- Target SLA: 99.99% uptime (43.2 minutes downtime/month)
- RTO (Recovery Time Objective): <1 hour for complete region failure
- RPO (Recovery Point Objective): <5 minutes for transactional data
- Maintenance Windows: No planned downtime; rolling updates only
- Regional Failover: Automatic DNS failover in <2 minutes
- Service Dependencies: Third-party payment gateway 99.95% SLA, email service 99.9% SLA
Performance Requirements
- API Latency: p50 <100ms, p99 <500ms, p99.9 <2000ms
- Search Latency: <100ms for property search results
- Booking Confirmation: <3 seconds end-to-end (including payment processing)
- Page Load Time: <2 seconds for initial page load (including CDN caching)
- Database Query Performance: >95% of queries <50ms
- Cache Hit Rate: >85% for frequently accessed data
- CDN Cache Hit Rate: >90% for static assets
Required Team Expertise
- AWS Certifications: Minimum 2 team members with AWS Solutions Architect Professional
- Kubernetes Experience: CKA or equivalent for platform team
- Programming Proficiency: Senior-level developers with 5+ years experience in Node.js/Java/Python
- DevOps Tools: Hands-on experience with Terraform, ArgoCD, GitHub Actions
- Database Skills: PostgreSQL DBA with performance tuning experience
- Security Clearance: Security team member with relevant certifications (CISSP, CEH preferred)
- On-Call Capability: Team members available for 24/7 rotation
Existing Infrastructure Considerations
- Greenfield Deployment: No legacy infrastructure dependencies
- Domain & DNS: Existing domain with Route 53 management
- SSL Certificates: ACM used for certificate provisioning and renewal
- Corporate Network: VPN connectivity to AWS VPC for admin access (optional)
- Identity Provider: Existing SSO provider integration with AWS IAM Identity Center
- Compliance: No existing compliance certifications; will pursue PCI-DSS, SOC 2 post-launch
Budget Constraints
- Infrastructure Budget: \$25,000-30,000/month for production (aligns with estimates)
- Tooling Budget: \$10,000/month for third-party tools (Datadog, PagerDuty, etc.)
- Team Budget: 15-20 FTE engineers for 6-month implementation
- Professional Services: \$50,000 budget for AWS Professional Services engagement (architecture review)
- Training: \$5,000/year per engineer for certifications and training
Regulatory & Compliance
- Data Residency: GDPR compliance requires EU data stored in EU region only
- PCI-DSS: Level 1 compliance required for payment processing (tokenization strategy)
- Data Retention: 7-year retention for financial records, 90-day for operational logs
- Right to Erasure: GDPR right to be forgotten implementation required
- Audit Trails: Immutable audit logs for all data access and modifications
- Privacy Policy: Updated to reflect AWS data processing agreements
Third-Party Integrations
- Payment Gateway: Stripe/Braintree integration for payment processing
- Email Service: Amazon SES for transactional emails, SendGrid backup
- SMS Gateway: Amazon SNS with Twilio fallback
- Analytics: Google Analytics, Mixpanel for user behavior tracking
- Customer Support: Zendesk/Intercom integration for support tickets
- Fraud Detection: Third-party fraud detection API (Sift, Forter)
12. Risks & Mitigations
Technical Risks
Risk 1: Database Connection Pool Exhaustion
- Likelihood: High during traffic spikes
- Impact: Critical - API errors, booking failures
-
Mitigation:
- Implement PgBouncer connection pooling with 10,000 max connections
- Configure application-level connection pools (HikariCP for Java, Sequelize for Node.js)
- Auto-scaling read replicas based on connection count metric
- Circuit breaker pattern to prevent cascading failures
- Monitoring alert when connections >80% capacity
Risk 2: DynamoDB Throttling
- Likelihood: Medium during unpredictable traffic bursts
- Impact: High - User session failures, degraded experience
-
Mitigation:
- On-demand capacity mode for unpredictable tables (user-sessions, user-signals)
- DAX caching layer reduces direct DynamoDB reads by 70%
- Exponential backoff with jitter for retried requests
- Monitoring throttled request metrics with P1 alerts
- Alternative: Pre-provision capacity with auto-scaling during known peak periods
Risk 3: Multi-Region Replication Lag
- Likelihood: Medium during network issues or high write volume
- Impact: High - Data inconsistency, double bookings in secondary region
-
Mitigation:
- Aurora Global Database replication typically <1s; monitor lag metric closely
- Implement application-level conflict resolution for rare conflicts
- Booking transactions only in primary region (write single-region pattern)
- Secondary regions read-only until manual promotion during DR
- Quarterly DR drills validate data consistency post-failover
Risk 4: Kafka Message Loss
- Likelihood: Low with MSK, but possible during broker failures
- Impact: High - Lost user events, incomplete analytics, missed notifications
-
Mitigation:
- Kafka replication factor 3 (data replicated to 3 brokers)
- Producer acknowledgment:
acks=all(wait for all replicas) - Consumer groups with committed offsets prevent duplicate processing
- Dead-letter queue for failed message processing
- Idempotent consumers handle duplicate messages gracefully
Risk 5: Kubernetes Control Plane Outage
- Likelihood: Very low (AWS manages EKS control plane with 99.95% SLA)
- Impact: Critical - Cannot deploy, scale, or manage pods
-
Mitigation:
- Existing pods continue running during control plane outage
- HPA and Cluster Autoscaler have local caching; continue operating briefly
- Multi-region deployment provides redundancy
- AWS support escalation for rapid resolution
- Post-incident review with AWS TAM to understand root cause
Operational Risks
Risk 6: Insufficient On-Call Coverage
- Likelihood: Medium - Engineer burnout, attrition
- Impact: High - Delayed incident response, SLA breaches
-
Mitigation:
- Primary and secondary on-call rotation (1-week shifts)
- Follow-the-sun model with global team (if applicable)
- Automated runbook execution for common incidents (reduces manual toil)
- Compensation: On-call stipend + overtime pay
- Regular retrospectives to improve on-call experience
Risk 7: Deployment-Induced Outages
- Likelihood: Medium during frequent deployments
- Impact: High - Service downtime, customer complaints
-
Mitigation:
- Blue-green deployments with automated validation gates
- Canary analysis: Gradual traffic shifting (10% → 100% over 30 min)
- Automated rollback on error rate >0.5% or latency >1000ms
- Deployment freeze during peak traffic periods (Fri-Sun)
- Post-deployment monitoring: 30-minute soak period before marking success
Risk 8: Security Breach or Data Leak
- Likelihood: Low with proper controls, but high-impact
- Impact: Critical - Legal liability, reputation damage, GDPR fines
-
Mitigation:
- Defense-in-depth: WAF, Security Groups, NACLs, encryption
- Regular penetration testing (quarterly) by third-party security firm
- GuardDuty and Security Hub continuous monitoring with automated response
- Secrets rotation every 30 days, no hardcoded credentials
- Incident response plan with legal and PR coordination
- Cyber insurance policy for breach liability coverage
Business Risks
Risk 9: Cost Overruns
- Likelihood: High without proper governance
- Impact: Medium - Budget overages, reduced profitability
-
Mitigation:
- AWS Budget alerts at 80%, 100%, 120% thresholds
- Monthly FinOps reviews with finance and engineering teams
- Rightsizing recommendations enforced through automation
- Savings Plans and Reserved Instances for predictable workloads
- Cost allocation tags for chargeback to product teams
- Automatic shutdown of non-production environments outside business hours
Risk 10: Third-Party Service Outages
- Likelihood: Medium - Payment gateway, email service, fraud detection
- Impact: High - Lost bookings, revenue impact
-
Mitigation:
- Multi-vendor strategy: Primary and backup providers (Stripe + Braintree)
- Circuit breaker pattern: Fail fast on third-party timeouts
- Graceful degradation: Queue bookings for later processing if payment gateway down
- SLA monitoring with vendor escalation paths
- Regular vendor reviews and performance assessments
Risk 11: Skill Gaps in Team
- Likelihood: Medium - AWS/Kubernetes expertise scarce
- Impact: Medium - Delayed implementation, suboptimal architecture
-
Mitigation:
- Hiring: Prioritize candidates with AWS certifications and K8s experience
- Training: \$5,000/year per engineer for certifications (AWS SA Pro, CKA)
- AWS Professional Services engagement for architecture review (\$50K)
- Knowledge sharing: Weekly tech talks, internal documentation wiki
- Pair programming and code reviews for knowledge transfer
Alternative Approaches Considered
Alternative 1: Serverless-First Architecture (Lambda + API Gateway)
- Pros: Lower operational overhead, automatic scaling, pay-per-use pricing
- Cons: Cold start latency (200-500ms), 15-minute Lambda timeout limit, vendor lock-in
- Decision: Hybrid approach - Use Lambda for event processing, EKS for core services requiring <100ms latency
Alternative 2: Multi-Cloud (AWS + GCP/Azure)
- Pros: Vendor diversification, leverage best-of-breed services per cloud
- Cons: Increased operational complexity, higher costs, team skill dilution
- Decision: Single-cloud (AWS) for simplicity; revisit multi-cloud if vendor risk increases
Alternative 3: Self-Managed Kubernetes (EC2 with kubeadm)
- Pros: Full control, cost savings (~30% vs EKS)
- Cons: Operational burden (control plane management, upgrades, security patches)
- Decision: Managed EKS for reduced operational overhead; focus engineering on product features
Alternative 4: Monolithic Architecture
- Pros: Simpler deployment, easier debugging, lower latency for inter-component calls
- Cons: Limited scalability, tight coupling, difficult to parallelize development
- Decision: Microservices for independent scaling and team autonomy; accept increased operational complexity
Alternative 5: Relational-Only Database (No DynamoDB)
- Pros: Simpler data model, ACID transactions across all data
- Cons: Aurora limited to 15 read replicas, higher latency for key-value lookups
- Decision: Polyglot persistence - Aurora for transactional data requiring ACID, DynamoDB for high-throughput key-value access patterns (sessions, user signals)
This comprehensive architecture provides a production-ready, scalable, secure, and cost-optimized solution for a high-performance travel booking platform following AWS Well-Architected Framework principles. The design handles 10M+ daily active users with 99.99% availability, sub-500ms latency, and robust disaster recovery capabilities.
Top comments (0)