DEV Community

Adam Mateusz Brożyński
Adam Mateusz Brożyński

Posted on


nVidia 525 + Cuda 11.8 + Python 3.10 + pyTorch GPU Docker image

It is a base environment for torch with GPU support (including 3090Ti!) that can be used for working with AI models. This image requires nvidia-driver-525 and nvidia-docker2 installed on host. It needs 30GB on disk!


FROM nvidia/cuda:11.8.0-devel-ubuntu22.04


RUN apt-get update --yes --quiet && DEBIAN_FRONTEND=noninteractive apt-get install --yes --quiet --no-install-recommends \
    software-properties-common \
    build-essential apt-utils \
    wget curl vim git ca-certificates kmod \
    nvidia-driver-525 \
 && rm -rf /var/lib/apt/lists/*

# PYTHON 3.10
RUN add-apt-repository --yes ppa:deadsnakes/ppa && apt-get update --yes --quiet
RUN DEBIAN_FRONTEND=noninteractive apt-get install --yes --quiet --no-install-recommends \
    python3.10 \
    python3.10-dev \
    python3.10-distutils \
    python3.10-lib2to3 \
    python3.10-gdbm \
    python3.10-tk \

RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 999 \
    && update-alternatives --config python3 && ln -s /usr/bin/python3 /usr/bin/python

RUN pip install --upgrade pip

RUN wget -O /tmp/ \
    && bash /tmp/ -b -p /anaconda \
    && eval "$(/anaconda/bin/conda shell.bash hook)" \
    && conda init \
    && conda update -n base -c defaults conda \
    && conda create --name env \
    && conda activate env \
    && conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch-nightly -c nvidia
Enter fullscreen mode Exit fullscreen mode


$ docker build -t nvidia-cuda .
Enter fullscreen mode Exit fullscreen mode


$ docker run --gpus all -it nvidia-cuda
Enter fullscreen mode Exit fullscreen mode


Run inside container:

$ conda activate env
$ python
Enter fullscreen mode Exit fullscreen mode
>>> include torch
>>> torch.cuda.is_available() 
Enter fullscreen mode Exit fullscreen mode

Top comments (0)

An Animated Guide to Node.js Event Loop

Node.js doesn’t stop from running other operations because of Libuv, a C++ library responsible for the event loop and asynchronously handling tasks such as network requests, DNS resolution, file system operations, data encryption, etc.

What happens under the hood when Node.js works on tasks such as database queries? We will explore it by following this piece of code step by step.