The AVLTree class extends the BST class to override the insert and delete methods to rebalance the tree if necessary. The code below gives the complete source code for the AVLTree class.
package demo;
public class AVLTree<E extends Comparable<E>> extends BST<E> {
/** Create an empty AVL tree */
public AVLTree() {}
/** Create an AVL tree from an array of objects */
public AVLTree(E[] objects) {
super(objects);
}
@Override /** Override createNewNode to create an AVLTreeNode */
protected AVLTreeNode<E> createNewNode(E e) {
return new AVLTreeNode<E>(e);
}
@Override /** Insert an element and rebalance if necessary */
public boolean insert(E e) {
boolean successful = super.insert(e);
if (!successful)
return false; // e is already in the tree
else {
balancePath(e); // Balance from e to the root if necessary
}
return true; // e is inserted
}
/** Update the height of a specified node */
private void updateHeight(AVLTreeNode<E> node) {
if (node.left == null && node.right == null) // node is a leaf
node.height = 0;
else if (node.left == null) // node has no left subtree
node.height = 1 + ((AVLTreeNode<E>)(node.right)).height;
else if (node.right == null) // node has no right subtree
node.height = 1 + ((AVLTreeNode<E>)(node.left)).height;
else
node.height = 1 + Math.max(((AVLTreeNode<E>)(node.right)).height, ((AVLTreeNode<E>)(node.left)).height);
}
/** Balance the nodes in the path from the specified
* node to the root if necessary
*/
private void balancePath(E e) {
java.util.ArrayList<TreeNode<E>> path = path(e);
for (int i = path.size() - 1; i >= 0; i--) {
AVLTreeNode<E> A = (AVLTreeNode<E>)(path.get(i));
updateHeight(A);
AVLTreeNode<E> parentOfA = (A == root) ? null : (AVLTreeNode<E>)(path.get(i - 1));
switch (balanceFactor(A)) {
case -2:
if (balanceFactor((AVLTreeNode<E>)A.left) <= 0) {
balanceLL(A, parentOfA); // Perform LL rotation
}
else {
balanceLR(A, parentOfA); // Perform LR rotation
}
break;
case +2:
if (balanceFactor((AVLTreeNode<E>)A.right) >= 0) {
balanceRR(A, parentOfA); // Perform RR rotation
}
else {
balanceRL(A, parentOfA); // Perform RL rotation
}
}
}
}
/** Return the balance factor of the node */
private int balanceFactor(AVLTreeNode<E> node) {
if (node.right == null) // node has no right subtree
return -node.height;
else if (node.left == null) // node has no left subtree
return +node.height;
else
return ((AVLTreeNode<E>)node.right).height - ((AVLTreeNode<E>)node.left).height;
}
/** Balance LL (see Figure 26.2) */
private void balanceLL(TreeNode<E> A, TreeNode<E> parentOfA) {
TreeNode<E> B = A.left; // A is left-heavy and B is left-heavy
if (A == root) {
root = B;
}
else {
if (parentOfA.left == A) {
parentOfA.left = B;
}
else {
parentOfA.right = B;
}
}
A.left = B.right; // Make T2 the left subtree of A
B.right = A; // Make A the left child of B
updateHeight((AVLTreeNode<E>)A);
updateHeight((AVLTreeNode<E>)B);
}
/** Balance LR (see Figure 26.4) */
private void balanceLR(TreeNode<E> A, TreeNode<E> parentOfA) {
TreeNode<E> B = A.left; // A is left-heavy
TreeNode<E> C = B.right; // B is right-heavy
if (A == root) {
root = C;
}
else {
if (parentOfA.left == A) {
parentOfA.left = C;
}
else {
parentOfA.right = C;
}
}
A.left = C.right; // Make T3 the left subtree of A
B.right = C.left; // Make T2 the right subtree of B
C.left = B;
C.right = A;
// Adjust heights
updateHeight((AVLTreeNode<E>)A);
updateHeight((AVLTreeNode<E>)B);
updateHeight((AVLTreeNode<E>)C);
}
/** Balance RR (see Figure 26.3) */
private void balanceRR(TreeNode<E> A, TreeNode<E> parentOfA) {
TreeNode<E> B = A.right; // A is right-heavy and B is right-heavy
if (A == root) {
root = B;
}
else {
if (parentOfA.left == A) {
parentOfA.left = B;
}
else {
parentOfA.right = B;
}
}
A.right = B.left; // Make T2 the right subtree of A
B.left = A;
updateHeight((AVLTreeNode<E>)A);
updateHeight((AVLTreeNode<E>)B);
}
/** Balance RL (see Figure 26.5) */
private void balanceRL(TreeNode<E> A, TreeNode<E> parentOfA) {
TreeNode<E> B = A.right; // A is right-heavy
TreeNode<E> C = B.left; // B is left-heavy
if (A == root) {
root = C;
}
else {
if (parentOfA.left == A) {
parentOfA.left = C;
}
else {
parentOfA.right = C;
}
}
A.right = C.left; // Make T2 the right subtree of A
B.left = C.right; // Make T3 the left subtree of B
C.left = A;
C.right = B;
// Adjust heights
updateHeight((AVLTreeNode<E>)A);
updateHeight((AVLTreeNode<E>)B);
updateHeight((AVLTreeNode<E>)C);
}
@Override /** Delete an element from the AVL tree.
* Return true if the element is deleted successfully
* Return false if the element is not in the tree */
public boolean delete(E element) {
if (root == null)
return false; // Element is not in the tree
// Locate the node to be deleted and also locate its parent node
TreeNode<E> parent = null;
TreeNode<E> current = root;
while (current != null) {
if (element.compareTo(current.element) < 0) {
parent = current;
current = current.left;
}
else if (element.compareTo(current.element) > 0) {
parent = current;
current = current.right;
}
else
break; // Element is in the tree pointed by current
}
if (current == null)
return false; // Element is not in the tree
// Case 1: current has no left children (See Figure 25.10)
if (current.left == null) {
// Connect the parent with the right child of the current node
if (parent == null) {
root = current.right;
}
else {
if (element.compareTo(parent.element) < 0)
parent.left = current.right;
else
parent.right = current.right;
// Balance the tree if necessary
balancePath(parent.element);
}
}
else {
// Case 2: The current node has a left child
// Locate the rightmost node in the left subtree of
// the current node and also its parent
TreeNode<E> parentOfRightMost = current;
TreeNode<E> rightMost = current.left;
while (rightMost.right != null) {
parentOfRightMost = rightMost;
rightMost = rightMost.right; // Keep going to the right
}
// Replace the element in current by the element in rightMost
current.element = rightMost.element;
// Eliminate rightmost node
if (parentOfRightMost.right == rightMost)
parentOfRightMost.right = rightMost.left;
else
// Special case: parentOfRightMost is current
parentOfRightMost.left = rightMost.left;
// Balance the tree if necessary
balancePath(parentOfRightMost.element);
}
size--;
return true; // Element inserted
}
/** AVLTreeNode is TreeNode plus height */
protected static class AVLTreeNode<E extends Comparable<E>> extends BST.TreeNode<E> {
protected int height = 0; // New data field
public AVLTreeNode(E e) {
super(e);
}
}
}
The AVLTree class extends BST. Like the BST class, the AVLTree class has a no-arg constructor that constructs an empty AVLTree (lines 5) and a constructor that creates an initial AVLTree from an array of elements (lines 8–10).
The createNewNode() method defined in the BST class creates a TreeNode. This method is overridden to return an AVLTreeNode (lines 13–15).
The insert method in AVLTree is overridden in lines 18–27. The method first invokes the insert method in BST, then invokes balancePath(e) (line 23) to ensure that the tree is balanced.
The balancePath method first gets the nodes on the path from the node that contains element e to the root (line 45). For each node in the path, update its height (line 48), check its balance factor (line 51), and perform appropriate rotations if necessary (lines 51–67).
Four methods for performing rotations are defined in lines 82–178. Each method is invoked with two TreeNode arguments—A and parentOfA—to perform an appropriate rotation at node A. How each rotation is performed is illustrated in Figures in the post. After the rotation, the heights of nodes A, B, and C are updated (lines 98, 125, 148, 175).
The delete method in AVLTree is overridden in lines 183–248. The method is the same as the one implemented in the BST class, except that you have to rebalance the nodes after deletion in two cases (lines 218, 243).
Top comments (0)