DEV Community

loading...
Cover image for Twitter scraping with Python

Twitter scraping with Python

petercour
・3 min read

Web scraping is a lot of fun. The web contains lots of data. Computers are all about data. So why not collect some from the web?

One source that's fun to collect from is Twitter. There are two default methods of scraping data. Using an API or using Selenium.

An API is the easy way, so we'll use Selenium. Selenium lets you automate the web browser.

Scraping

The script below collects tweets given a search query. They are then saved into a csv file. It's based on a github script that didn't work, so I fixed it.

You can load the CSV data in any office suite. For the search "Machine Learning", it collected these:

So the code is not perfect, but it works.

#!usr/bin/python3

from bs4 import BeautifulSoup
import time
from csv import DictWriter
import pprint
import datetime
from datetime import date, timedelta
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException


def init_driver(driver_type):
    if driver_type == 1:
        driver = webdriver.Firefox()
    elif driver_type == 2:
        driver = webdriver.Chrome()
    elif driver_type == 3:
        driver = webdriver.Ie()
    elif driver_type == 4:
        driver = webdriver.Opera()
    elif driver_type == 5:
        driver = webdriver.PhantomJS()
    driver.wait = WebDriverWait(driver, 5)
    return driver


def scroll(driver, start_date, end_date, words, lang, max_time=180):
    languages = { 1: 'en', 2: 'it', 3: 'es', 4: 'fr', 5: 'de', 6: 'ru', 7: 'zh'}
    url = "https://twitter.com/search?q="
    for w in words[:-1]:
        url += "{}%20OR".format(w)
    url += "{}%20".format(words[-1])
    url += "since%3A{}%20until%3A{}&".format(start_date, end_date)
    if lang != 0:
        url += "l={}&".format(languages[lang])
    url += "src=typd"
    print(url)
    driver.get(url)
    start_time = time.time()  # remember when we started
    while (time.time() - start_time) < max_time:
        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
        print( str(time.time() - start_time) + " < " + str(max_time) )


def scrape_tweets(driver):
    try:
        tweet_divs = driver.page_source
        obj = BeautifulSoup(tweet_divs, "html.parser")
        content = obj.find_all("div", class_="content")
        print(content)

        print("content printed")
        print(len(content))
        for c in content:
            tweets = c.find("p", class_="tweet-text").strings
            tweet_text = "".join(tweets)
            print(tweet_text)
            print("-----------")
            try:
                name = (c.find_all("strong", class_="fullname")[0].string).strip()
            except AttributeError:
                name = "Anonymous"
            date = (c.find_all("span", class_="_timestamp")[0].string).strip()

            datestring = str(c.find_all("span", class_="_timestamp")[0])
            print(datestring)
            datestring = datestring[datestring.index("data-time")+11:]
            datestring = datestring[:datestring.index("\"")]
            print(datestring)
            # print(tweet_text)            
            try:
                write_csv(datestring,tweet_text,name)
            except:
                print('csv error')

    except Exception as e:
        print("Something went wrong!")
        print(e)
        driver.quit()


def write_csv_header():
    with open("twitterData.csv", "w+") as csv_file:
        fieldnames = ['Date', 'Name', 'Tweets','Tags']
        writer = DictWriter(csv_file, fieldnames=fieldnames)
        writer.writeheader()

def write_csv(date,tweet,name):
    with open("twitterData.csv", "a+") as csv_file:
        fieldnames = ['Date', 'Name', 'Tweets','Tags']
        writer = DictWriter(csv_file, fieldnames=fieldnames)
        #writer.writeheader()
        writer.writerow({'Date': date,'Name': name,'Tweets': tweet})



def make_csv(data):
    l = len(data['date'])
    print("count: %d" % l)
    with open("twitterData.csv", "a+") as file:
        fieldnames = ['Date', 'Name', 'Tweets']
        writer = DictWriter(file, fieldnames=fieldnames)
        writer.writeheader()
        for i in range(l):
            writer.writerow({'Date': data['date'][i],
                            'Name': data['name'][i],
                            'Tweets': data['tweet'][i],
                            })


def get_all_dates(start_date, end_date):
    dates = []
    start_date = datetime.datetime.strptime(start_date, "%Y-%m-%d")
    end_date = datetime.datetime.strptime(end_date, "%Y-%m-%d")
    step = timedelta(days=1)
    while start_date <= end_date:
        dates.append(str(start_date.date()))
        start_date += step

    return dates


def main():
    driver_type = int(input("1) Firefox | 2) Chrome | 3) IE | 4) Opera | 5) PhantomJS\nEnter the driver you want to use: "))
    wordsToSearch = input("Enter the words: ").split(',')
    for w in wordsToSearch:
        w = w.strip()
    start_date = input("Enter the start date in (YYYY-MM-DD): ")
    end_date = input("Enter the end date in (YYYY-MM-DD): ")

    lang = int(input("0) All Languages 1) English | 2) Italian | 3) Spanish | 4) French | 5) German | 6) Russian | 7) Chinese\nEnter the language you want to use: "))
    all_dates = get_all_dates(start_date, end_date)
    print(all_dates)
    write_csv_header()
    for i in range(len(all_dates) - 1):
        driver = init_driver(driver_type)
        scroll(driver, str(all_dates[i]), str(all_dates[i + 1]), wordsToSearch, lang)
        scrape_tweets(driver)
        time.sleep(5)
        print("The tweets for {} are ready!".format(all_dates[i]))
        driver.quit()


if __name__ == "__main__":
    main()

Related links:

Discussion (2)

Collapse
andypiper profile image
Andy Piper

Scraping Twitter is against the Terms of Service, so I would not recommend this approach. You'd be better off using the official API as the data is much more rich, and you're less likely to have your IP blocked.

Collapse
petercour profile image
petercour Author

Thanks!