hiðŸ‘‹Devs,

I hope you getting some things from this ** Sorting Algorithms** series.

in this article, we will discuss the very efficient and fast algorithm,

**algorithms.**

*Merge Sort*## Merge Sort

**Merge Sort** algorithm is based on the divide & conquer principle which states that repeatedly breaks down the problem into sub-problem, solves each sub-problem individually, and combines the sub-problem solutions into a final solution.

Let's understand this algorithm in a much better way with an example.

**step-1** find the `mid`

point and recursively divide the array into two subarrays until the array size becomes 1.

**step-2** merge the two subarrays into an array till the final array is merged, in ascending order.

Pseudocode for recursively divide the array into two sub-arrays.

**step-1** initialise `left`

& `right`

index of an array.

**step-2** return if array size is `1`

.

if `left >= right`

return.

**step-3** find the `mid`

of the array.

`mid = (left + right) / 2`

**step-4** divide the array into two sub-array.

`divide( array, left, mid)`

`divide( array, mid+1, right)`

**step-5** merge the two sub-array into a array.

`marge( array, left, mid, right)`

Pseudocode for merge the two sub-arrays.

**step-1** calculate the size of `left`

& `right`

sub-arrays.

`leftArrSize = mid - left+1`

`rightArrSize = right - mid`

**step-2** initialise the temps arrays for `left`

& `right`

sub-arrays

`leftArr[]`

`rightArr[]`

**step-3** copy sub-arrays into the temp arrays.

`leftArr[] = array[left....mid]`

`rightArr[] = array[mid+1...right]`

**step-4** set initial indexes of subarrays & array.

`leftPointer = 0`

`rightPointer = 0`

`arrPointer = left`

**step-5** copy the `temp`

sub-arrays into an `array`

, in ascending or descending order, till the end of any `temp`

sub-arrays.

**step-6** copy the remaining elements of temp sub-arrays.

*see the java implementation*

## Java

```
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
int[] arr = new int[]{5,9,2,7,1,10,4,1,50};
System.out.println("unsorted Array : "+Arrays.toString(arr));
mergeSort(arr,0,arr.length-1);
System.out.println("sorted Array in ascending order : "+Arrays.toString(arr));
}
private static void mergeSort(int[] arr,int left,int right){
// return if arr size becomes 1
if(left >= right) return;
// calculate the mid
int mid = ( left + right ) / 2;
// divide the array into two subarrays
mergeSort(arr,left,mid);
mergeSort(arr,mid+1,right);
// merge subarrays
merge(arr,left,mid,right);
}
private static void merge(int[] arr,int left,int mid,int right){
// calculate the size of left & right subarrays
int leftArrSize = mid - left+1;
int rightArrSize = right - mid;
// initialise temp subarrays
int[] leftArr = new int[leftArrSize];
int[] rightArr = new int[rightArrSize];
// copy left & right array into temp arrays
for (int i = 0; i < leftArrSize; ++i)
leftArr[i] = arr[left + i];
for (int j = 0; j < rightArrSize; ++j)
rightArr[j] = arr[mid + 1 + j];
// set initial indexes of subarrays
int leftPointer = 0;
int rightPointer = 0;
int arrPointer = left;
// copy temp subarrays, in ascending order
while(leftPointer < leftArrSize && rightPointer < rightArrSize ){
if(leftArr[leftPointer] <= rightArr[rightPointer]){
arr[arrPointer] = leftArr[leftPointer];
arrPointer++;
leftPointer++;
}else{
arr[arrPointer] = rightArr[rightPointer];
arrPointer++;
rightPointer++;
}
}
// copy the remaining elements of left subarray into a marge array
while(leftPointer < leftArrSize){
arr[arrPointer] = leftArr[leftPointer];
arrPointer++;
leftPointer++;
}
// copy the remaining elements of right subarray into a merge array
while(rightPointer < rightArrSize){
arr[arrPointer] = rightArr[rightPointer];
arrPointer++;
rightPointer++;
}
}
}
```

Thank you for reading this article. share this article with your dev friends and save it for the future.

## Top comments (0)