DEV Community

Crypto-Shredding: How Immutable Audit Logs and GDPR Coexist

Crypto-Shredding: How Immutable Audit Logs and GDPR Coexist

A common criticism of blockchain-based audit systems:

"You can't have immutable logs AND GDPR compliance. Blockchain's whole point is that nothing can be deleted."

This sounds logical. It's also wrong.

Let me show you exactly how it works—with code.

The Architecture

┌──────────────────┐     ┌──────────────────┐     ┌──────────────────┐
│   Raw Event      │     │  Encrypted Blob  │     │   Hash Chain     │
│                  │────▶│                  │────▶│                  │
│  PII + Trade     │     │  AES-256-GCM     │     │  SHA-256 Hash    │
│  Data            │     │  (in Database)   │     │  (Immutable)     │
└──────────────────┘     └──────────────────┘     └──────────────────┘
                                  │
                                  ▼
                         ┌──────────────────┐
                         │  Encryption Key  │
                         │  (in HSM/KMS)    │
                         └──────────────────┘
Enter fullscreen mode Exit fullscreen mode

Key insight: The immutable ledger only stores hashes, not data.

Implementation

Step 1: Encrypt the Event

from cryptography.hazmat.primitives.ciphers.aead import AESGCM
import os
import hashlib
import json

def encrypt_event(event_data: dict, key: bytes) -> tuple[bytes, bytes]:
    """Encrypt event data with AES-256-GCM"""
    nonce = os.urandom(12)
    aesgcm = AESGCM(key)
    plaintext = json.dumps(event_data).encode()
    ciphertext = aesgcm.encrypt(nonce, plaintext, None)
    return nonce, ciphertext

# Example event with PII
event = {
    "user_id": "user_12345",
    "user_name": "John Smith",  # PII
    "trade": "BUY XAUUSD 1.0 @ 1920.50",
    "timestamp": "2024-12-08T10:30:00Z"
}

# Generate user-specific key (in production: use KMS)
user_key = os.urandom(32)  # 256-bit key
nonce, encrypted_blob = encrypt_event(event, user_key)
Enter fullscreen mode Exit fullscreen mode

Step 2: Hash for the Immutable Chain

def compute_event_hash(encrypted_blob: bytes, prev_hash: str) -> str:
    """RFC 6962 compliant hash computation"""
    # Leaf hash: 0x00 prefix
    leaf_data = b'\x00' + encrypted_blob
    leaf_hash = hashlib.sha256(leaf_data).hexdigest()

    # Chain linkage
    chain_input = f"{leaf_hash}|{prev_hash}"
    return hashlib.sha256(chain_input.encode()).hexdigest()

GENESIS_HASH = "0" * 64
event_hash = compute_event_hash(encrypted_blob, GENESIS_HASH)

print(f"Event Hash: {event_hash}")
# Output: Event Hash: 7f3a9b2c4d5e6f7a8b9c0d1e2f3a4b5c...
Enter fullscreen mode Exit fullscreen mode

Step 3: Store Separately

# Database: encrypted blob + nonce
database_record = {
    "event_id": "evt_001",
    "nonce": nonce.hex(),
    "ciphertext": encrypted_blob.hex(),
    "key_id": "key_user_12345"  # Reference to key in KMS
}

# Immutable ledger: hash only
ledger_record = {
    "event_id": "evt_001",
    "event_hash": event_hash,
    "prev_hash": GENESIS_HASH,
    "timestamp": "2024-12-08T10:30:00Z"
}

# The ledger NEVER contains: user_name, user_id, trade details
Enter fullscreen mode Exit fullscreen mode

The Crypto-Shredding Process

When a user invokes GDPR Article 17 (Right to Erasure):

def crypto_shred(user_id: str, kms_client) -> dict:
    """
    Destroy encryption key, rendering all user data unrecoverable.
    The hash chain remains intact.
    """
    key_id = f"key_{user_id}"

    # Schedule key for deletion (AWS KMS style)
    kms_client.schedule_key_deletion(
        KeyId=key_id,
        PendingWindowInDays=7  # Regulatory cooling-off period
    )

    return {
        "status": "shredded",
        "user_id": user_id,
        "key_id": key_id,
        "hash_chain": "INTACT",
        "encrypted_blobs": "EXIST_BUT_UNREADABLE",
        "original_data": "PERMANENTLY_UNRECOVERABLE"
    }
Enter fullscreen mode Exit fullscreen mode

Before vs After

# BEFORE key deletion
def decrypt_event(nonce: bytes, ciphertext: bytes, key: bytes) -> dict:
    aesgcm = AESGCM(key)
    plaintext = aesgcm.decrypt(nonce, ciphertext, None)
    return json.loads(plaintext)

decrypted = decrypt_event(nonce, encrypted_blob, user_key)
print(decrypted)
# Output: {"user_id": "user_12345", "user_name": "John Smith", ...}

# AFTER key deletion
try:
    decrypted = decrypt_event(nonce, encrypted_blob, None)
except Exception as e:
    print(f"Decryption failed: {e}")
# Output: Decryption failed: key is required

# But the hash chain is still valid!
verify_result = verify_hash_chain(ledger_records)
print(f"Chain valid: {verify_result}")
# Output: Chain valid: True
Enter fullscreen mode Exit fullscreen mode

Merkle Tree Integration

For efficient verification, events are batched into Merkle trees:

def build_merkle_tree(event_hashes: list[str]) -> str:
    """RFC 6962 compliant Merkle tree"""
    if len(event_hashes) == 0:
        raise ValueError("Empty tree")

    # Leaf hashes (0x00 prefix already applied)
    level = event_hashes.copy()

    while len(level) > 1:
        next_level = []
        for i in range(0, len(level), 2):
            left = level[i]
            right = level[i + 1] if i + 1 < len(level) else left
            # Internal node: 0x01 prefix
            combined = bytes.fromhex('01') + bytes.fromhex(left) + bytes.fromhex(right)
            parent = hashlib.sha256(combined).hexdigest()
            next_level.append(parent)
        level = next_level

    return level[0]  # Merkle root

# Build tree from today's events
daily_events = [event_hash, event_hash_2, event_hash_3, event_hash_4]
merkle_root = build_merkle_tree(daily_events)

# Anchor to external timestamp authority or blockchain
anchor_record = {
    "merkle_root": merkle_root,
    "event_count": len(daily_events),
    "anchored_at": "2024-12-08T23:59:59Z",
    "anchor_type": "timestamp_authority"
}
Enter fullscreen mode Exit fullscreen mode

Inclusion Proof (Post-Shredding)

Even after crypto-shredding, you can prove an event existed:

def generate_inclusion_proof(tree_leaves: list[str], leaf_index: int) -> dict:
    """Generate Merkle inclusion proof for a specific leaf"""
    proof = []
    level = tree_leaves.copy()
    idx = leaf_index

    while len(level) > 1:
        sibling_idx = idx ^ 1  # XOR to get sibling
        if sibling_idx < len(level):
            proof.append({
                "hash": level[sibling_idx],
                "position": "right" if idx % 2 == 0 else "left"
            })
        idx //= 2
        # Compute next level
        next_level = []
        for i in range(0, len(level), 2):
            left = level[i]
            right = level[i + 1] if i + 1 < len(level) else left
            combined = bytes.fromhex('01') + bytes.fromhex(left) + bytes.fromhex(right)
            next_level.append(hashlib.sha256(combined).hexdigest())
        level = next_level

    return {
        "leaf_hash": tree_leaves[leaf_index],
        "proof": proof,
        "root": level[0]
    }

# After shredding, you can still prove:
# ✅ An event with hash X existed
# ✅ It was included in the Merkle tree
# ✅ The tree was anchored at time T
# ❌ What the event contained (unrecoverable)
Enter fullscreen mode Exit fullscreen mode

Real-World Adoption

This isn't theoretical. Major platforms use crypto-shredding:

Provider Implementation
AWS KMS ScheduleKeyDeletion API
Google Cloud Customer-Managed Encryption Keys (CMEK)
Azure Key Vault soft-delete + purge
Apple iCloud key-based encryption

Standards that endorse this approach:

  • NIST SP 800-88 Rev. 1 — Guidelines for Media Sanitization
  • ISO 27001 — Information Security Management
  • GDPR Recital 26 — Anonymization as exemption

Common Objections

"What if someone copied the key?"

Operational security concern, not architectural flaw. Use:

  • HSMs (Hardware Security Modules)
  • Key rotation policies
  • Access logging and alerts
  • Multi-party key management

"Quantum computers will break this!"

AES-256 remains quantum-resistant (Grover's algorithm only halves effective key length to 128-bit, still secure). For hash functions, use SHA-3 or BLAKE3 if concerned.

"Metadata leaks information!"

Smart implementations encrypt metadata too, or apply differential privacy to aggregates. The hash reveals only "an event occurred," not what kind.

Summary

┌─────────────────────────────────────────────────────────────┐
│                    BEFORE SHREDDING                         │
├─────────────────────────────────────────────────────────────┤
│  Encrypted Blob  ──────▶  Key  ──────▶  Original Data      │
│  Hash Chain      ──────▶  Integrity Proof                  │
└─────────────────────────────────────────────────────────────┘

┌─────────────────────────────────────────────────────────────┐
│                    AFTER SHREDDING                          │
├─────────────────────────────────────────────────────────────┤
│  Encrypted Blob  ──────▶  [KEY DESTROYED]  ──────▶  ????   │
│  Hash Chain      ──────▶  Integrity Proof  ✅              │
└─────────────────────────────────────────────────────────────┘

✅ Immutable audit trail: PRESERVED
✅ Cryptographic integrity: VERIFIED
✅ GDPR compliance: ACHIEVED
✅ Right to erasure: HONORED
Enter fullscreen mode Exit fullscreen mode

The bottom line: "Immutable" refers to the hash chain structure, not the underlying data. With proper cryptographic architecture, you get both auditability and privacy.


Resources


Building audit systems for algorithmic trading? Check out the VeritasChain Protocol (VCP) — an open standard implementing these principles: veritaschain.org

Top comments (0)