DEV Community

Vuk Rosić
Vuk Rosić

Posted on

Zero To Mastery AI Researcher & Engineer (in development)

Goal is for learners to be able to join top tier labs (OpenAI, Google, MIT) or publish cutting edge open source research & code models.

Introduction & Motivation

Python for Machine Learning: From Simple to Advanced

Code a Neural Network from Scratch in NumPy

Google Colab
Article

Attention Mechanism Tutorial: From Simple to Advanced


Unstructuraed notes

Machine Learning & Deep Learning Course Syllabus

Module 1: Foundations

Building blocks of machine learning and computation

1.1 Programming Fundamentals

  • 1.1.1 Python Basics
    • Variables and data types
    • Lists, dictionaries, functions
    • Control flow and loops
    • File I/O and string manipulation
  • 1.1.2 NumPy Essentials
  • 1.1.3 Data Manipulation
    • Pandas fundamentals
    • Data cleaning and preprocessing
    • Handling missing values
    • Basic statistics and aggregations

1.2 Mathematical Foundations

  • 1.2.1 Linear Algebra
    • Vectors and matrices
    • Matrix multiplication
    • Eigenvalues and eigenvectors
    • Norms and distances
  • 1.2.2 Calculus for ML
    • Derivatives and gradients
    • Chain rule
    • Partial derivatives
    • Optimization basics
  • 1.2.3 Probability and Statistics
    • Probability distributions
    • Bayes' theorem
    • Expected value and variance
    • Sampling and estimation

1.3 Data Types and Representation

  • 1.3.1 Numerical Data
    • Integers and floating point
    • Precision and overflow
    • Binary representation
    • Normalization techniques
  • 1.3.2 Text Data
    • ASCII and Unicode
    • UTF-8 encoding
    • String processing
    • Regular expressions
  • 1.3.3 Tensor Operations
    • Tensor shapes and dimensions
    • Views and strides
    • Contiguous memory layout
    • Broadcasting rules

Module 2: Core Machine Learning

Traditional ML algorithms and concepts

2.1 Supervised Learning Fundamentals

  • 2.1.1 Linear Models
    • Linear regression
    • Logistic regression
    • Regularization (L1, L2)
    • Feature engineering
  • 2.1.2 Tree-Based Methods
    • Decision trees
    • Random forests
    • Gradient boosting
    • Feature importance
  • 2.1.3 Instance-Based Learning
    • k-Nearest Neighbors
    • Distance metrics
    • Curse of dimensionality
    • Locality sensitive hashing

2.2 Unsupervised Learning

  • 2.2.1 Clustering
    • K-means clustering
    • Hierarchical clustering
    • DBSCAN
    • Cluster evaluation
  • 2.2.2 Dimensionality Reduction
    • Principal Component Analysis (PCA)
    • t-SNE
    • UMAP
    • Manifold learning
  • 2.2.3 Association Rules
    • Market basket analysis
    • Apriori algorithm
    • FP-growth
    • Lift and confidence

2.3 Model Evaluation and Selection

  • 2.3.1 Performance Metrics
    • Accuracy, precision, recall
    • F1-score and ROC curves
    • Regression metrics (MSE, MAE, R²)
    • Cross-validation
  • 2.3.2 Bias-Variance Tradeoff
    • Overfitting and underfitting
    • Model complexity
    • Learning curves
    • Regularization strategies
  • 2.3.3 Hyperparameter Tuning
    • Grid search
    • Random search
    • Bayesian optimization
    • Automated ML (AutoML)

Module 3: Language Modeling Fundamentals

Building language models from scratch

3.1 Statistical Language Models

  • 3.1.1 Bigram Language Models
    • Text preprocessing and tokenization
    • Bigram counting and probabilities
    • Smoothing techniques
    • Text generation and sampling
  • 3.1.2 N-gram Models
    • Extending to trigrams and beyond
    • Backoff and interpolation
    • Perplexity evaluation
    • Limitations of n-grams
  • 3.1.3 Language Model Evaluation
    • Perplexity and cross-entropy
    • Held-out evaluation
    • Human evaluation
    • Downstream task evaluation

3.2 Neural Language Models

  • 3.2.1 Feed-Forward Networks
    • Multi-layer perceptrons
    • Activation functions
    • Universal approximation theorem
    • Gradient descent basics
  • 3.2.2 Backpropagation
    • Micrograd implementation
    • Computational graphs
    • Automatic differentiation
    • Chain rule in practice
  • 3.2.3 Word Embeddings
    • Distributed representations
    • Word2Vec and GloVe
    • Embedding spaces
    • Analogies and relationships

Module 4: Deep Learning Foundations

Core neural network concepts and architectures

4.1 Neural Network Fundamentals

  • 4.1.1 Perceptron and Multi-layer Networks
    • Single perceptron
    • Multi-layer perceptron (MLP)
    • Matrix multiplication implementation
    • Activation functions (ReLU, GELU, Sigmoid)
  • 4.1.2 Training Neural Networks
    • Loss functions
    • Gradient descent variants
    • Learning rate scheduling
    • Batch processing
  • 4.1.3 Regularization Techniques
    • Dropout
    • Batch normalization
    • Weight decay
    • Early stopping

4.2 Sequence Models

  • 4.2.1 Recurrent Neural Networks
    • Vanilla RNNs
    • Backpropagation through time
    • Vanishing gradient problem
    • Bidirectional RNNs
  • 4.2.2 LSTM and GRU
    • Long Short-Term Memory
    • Gated Recurrent Units
    • Forget gates and memory cells
    • Sequence-to-sequence models
  • 4.2.3 Convolutional Networks
    • 1D convolutions for text
    • Pooling operations
    • CNN architectures
    • Feature maps and filters

4.3 Attention Mechanisms

  • 4.3.1 Attention Fundamentals
    • Attention intuition
    • Query, Key, Value matrices
    • Attention scores and weights
    • Scaled dot-product attention
  • 4.3.2 Self-Attention
    • Self-attention mechanism
    • Multi-head attention
    • Positional encoding
    • Attention visualization
  • 4.3.3 Advanced Attention
    • Sparse attention patterns
    • Local attention
    • Cross-attention
    • Attention variants

Module 5: Transformers and Modern Architectures

State-of-the-art language models

5.1 Transformer Architecture

  • 5.1.1 Transformer Components
    • Encoder-decoder structure
    • Multi-head self-attention
    • Feed-forward networks
    • Residual connections
  • 5.1.2 Layer Normalization
    • LayerNorm vs BatchNorm
    • Pre-norm vs post-norm
    • RMSNorm variants
    • Normalization placement
  • 5.1.3 Positional Encoding
    • Sinusoidal encoding
    • Learned positional embeddings
    • Rotary Position Embedding (RoPE)
    • Relative position encoding

5.2 GPT Architecture

  • 5.2.1 GPT-1 and GPT-2
    • Decoder-only architecture
    • Causal self-attention
    • Autoregressive generation
    • Scaling laws
  • 5.2.2 GPT-3 and Beyond
    • Few-shot learning
    • In-context learning
    • Emergent abilities
    • Instruction following
  • 5.2.3 Modern Variants
    • Llama architecture
    • Grouped Query Attention (GQA)
    • Mixture of Experts (MoE)
    • Retrieval-augmented generation

5.3 Training Large Models

  • 5.3.1 Optimization Techniques
    • AdamW optimizer
    • Learning rate scheduling
    • Gradient clipping
    • Weight initialization
  • 5.3.2 Scaling Considerations
    • Parameter scaling
    • Compute scaling
    • Data scaling
    • Optimal compute allocation
  • 5.3.3 Stability and Convergence
    • Training dynamics
    • Loss spikes and recovery
    • Gradient monitoring
    • Debugging techniques

Module 6: Tokenization and Data Processing

Text preprocessing and representation

6.1 Tokenization Fundamentals

  • 6.1.1 Basic Tokenization
    • Whitespace tokenization
    • Punctuation handling
    • Case normalization
    • Unicode considerations
  • 6.1.2 Subword Tokenization
    • Byte Pair Encoding (BPE)
    • WordPiece tokenization
    • SentencePiece
    • Unigram tokenization
  • 6.1.3 MinBPE Implementation
    • BPE algorithm from scratch
    • Merge operations
    • Vocabulary building
    • Encoding and decoding

6.2 Advanced Tokenization

  • 6.2.1 Handling Special Cases
    • Out-of-vocabulary words
    • Numbers and dates
    • Code and structured text
    • Multilingual tokenization
  • 6.2.2 Tokenizer Training
    • Corpus preparation
    • Vocabulary size selection
    • Special tokens
    • Tokenizer evaluation
  • 6.2.3 Tokenization Trade-offs
    • Vocabulary size vs. sequence length
    • Compression efficiency
    • Downstream task performance
    • Computational considerations

6.3 Data Pipeline

  • 6.3.1 Data Loading
    • Efficient data loading
    • Streaming large datasets
    • Data sharding
    • Memory management
  • 6.3.2 Data Preprocessing
    • Text cleaning
    • Deduplication
    • Quality filtering
    • Format standardization
  • 6.3.3 Synthetic Data Generation
    • Data augmentation
    • Synthetic data creation
    • Curriculum learning
    • Domain adaptation

Module 7: Optimization and Training

Advanced training techniques and optimization

7.1 Optimization Algorithms

  • 7.1.1 Gradient Descent Variants
    • SGD with momentum
    • AdaGrad and AdaDelta
    • RMSprop
    • Adam and AdamW
  • 7.1.2 Advanced Optimizers
    • LAMB optimizer
    • Lookahead optimizer
    • Shampoo optimizer
    • Second-order methods
  • 7.1.3 Learning Rate Scheduling
    • Step decay
    • Cosine annealing
    • Warm restarts
    • Cyclical learning rates

7.2 Training Strategies

  • 7.2.1 Initialization Techniques
    • Xavier/Glorot initialization
    • He initialization
    • Layer-wise initialization
    • Transfer learning initialization
  • 7.2.2 Regularization Methods
    • Dropout variants
    • DropConnect
    • Stochastic depth
    • Mixup and CutMix
  • 7.2.3 Curriculum Learning
    • Easy-to-hard scheduling
    • Data ordering strategies
    • Multi-task learning
    • Progressive training

7.3 Training Monitoring

  • 7.3.1 Metrics and Logging
    • Loss monitoring
    • Gradient norms
    • Learning rate tracking
    • Model checkpointing
  • 7.3.2 Debugging Training
    • Gradient flow analysis
    • Activation monitoring
    • Weight distribution analysis
    • Convergence diagnostics
  • 7.3.3 Hyperparameter Tuning
    • Grid and random search
    • Bayesian optimization
    • Population-based training
    • Multi-objective optimization

Module 8: Efficient Computing

Hardware acceleration and optimization

8.1 Device Optimization

  • 8.1.1 CPU vs GPU Computing
    • CPU architecture
    • GPU parallelism
    • Memory hierarchies
    • Compute vs memory bound
  • 8.1.2 GPU Programming
    • CUDA basics
    • Tensor cores
    • Memory coalescing
    • Kernel optimization
  • 8.1.3 Specialized Hardware
    • TPUs and tensor processing
    • FPGAs for inference
    • Neuromorphic computing
    • Edge computing devices

8.2 Precision and Quantization

  • 8.2.1 Numerical Precision
    • FP32, FP16, BF16
    • Mixed precision training
    • Automatic mixed precision
    • Precision-accuracy trade-offs
  • 8.2.2 Quantization Techniques
    • Post-training quantization
    • Quantization-aware training
    • Dynamic quantization
    • Pruning and sparsity
  • 8.2.3 Low-Precision Inference
    • INT8 quantization
    • Binary neural networks
    • FP8 formats
    • Hardware-specific optimizations

8.3 Distributed Training

  • 8.3.1 Data Parallelism
    • Distributed Data Parallel (DDP)
    • Gradient synchronization
    • Communication optimization
    • Fault tolerance
  • 8.3.2 Model Parallelism
    • Pipeline parallelism
    • Tensor parallelism
    • ZeRO optimizer states
    • Gradient checkpointing
  • 8.3.3 Large-Scale Training
    • Multi-node training
    • Communication backends
    • Load balancing
    • Scalability analysis

Module 9: Inference and Deployment

Model serving and optimization

9.1 Inference Optimization

  • 9.1.1 KV-Cache
    • Key-value caching
    • Memory management
    • Cache optimization
    • Batched inference
  • 9.1.2 Model Compression
    • Pruning techniques
    • Knowledge distillation
    • Model quantization
    • Neural architecture search
  • 9.1.3 Serving Optimization
    • Batch processing
    • Dynamic batching
    • Continuous batching
    • Speculative decoding

9.2 Production Deployment

  • 9.2.1 Model Serving
    • REST API design
    • gRPC services
    • WebSocket connections
    • Load balancing
  • 9.2.2 Containerization
    • Docker containers
    • Kubernetes orchestration
    • Serverless deployment
    • Edge deployment
  • 9.2.3 Monitoring and Observability
    • Performance metrics
    • Model monitoring
    • A/B testing
    • Failure detection

9.3 Scalability and Reliability

  • 9.3.1 Horizontal Scaling
    • Load balancing
    • Auto-scaling
    • Resource management
    • Cost optimization
  • 9.3.2 Fault Tolerance
    • Error handling
    • Fallback mechanisms
    • Circuit breakers
    • Graceful degradation
  • 9.3.3 Security and Privacy
    • Input validation
    • Rate limiting
    • Data privacy
    • Model security

Module 10: Fine-tuning and Adaptation

Customizing models for specific tasks

10.1 Supervised Fine-tuning

  • 10.1.1 Full Fine-tuning
    • Transfer learning
    • Layer freezing
    • Learning rate scheduling
    • Catastrophic forgetting
  • 10.1.2 Parameter-Efficient Fine-tuning
    • Low-Rank Adaptation (LoRA)
    • Adapters
    • Prompt tuning
    • Prefix tuning
  • 10.1.3 Task-Specific Adaptation
    • Classification fine-tuning
    • Generation fine-tuning
    • Multi-task learning
    • Domain adaptation

10.2 Reinforcement Learning

  • 10.2.1 RL Fundamentals
    • Markov Decision Processes
    • Policy gradient methods
    • Value-based methods
    • Actor-critic algorithms
  • 10.2.2 RLHF (Reinforcement Learning from Human Feedback)
    • Reward modeling
    • Proximal Policy Optimization (PPO)
    • Direct Preference Optimization (DPO)
    • Constitutional AI
  • 10.2.3 Advanced RL Techniques
    • Multi-agent RL
    • Hierarchical RL
    • Meta-learning
    • Offline RL

10.3 Alignment and Safety

  • 10.3.1 AI Alignment
    • Value alignment
    • Reward hacking
    • Goodhart's law
    • Interpretability
  • 10.3.2 Safety Measures
    • Content filtering
    • Bias detection
    • Adversarial robustness
    • Failure modes
  • 10.3.3 Evaluation and Testing
    • Benchmarking
    • Human evaluation
    • Stress testing
    • Red teaming

Module 11: Multimodal Learning

Beyond text: images, audio, and video

11.1 Vision-Language Models

  • 11.1.1 Image Processing
    • Convolutional neural networks
    • Vision transformers
    • Image tokenization
    • Patch embeddings
  • 11.1.2 Vision-Language Architectures
    • CLIP model
    • Cross-modal attention
    • Unified encoders
    • Multimodal fusion
  • 11.1.3 Applications
    • Image captioning
    • Visual question answering
    • Text-to-image generation
    • Multimodal reasoning

11.2 Generative Models

  • 11.2.1 Variational Autoencoders
    • VAE fundamentals
    • VQVAE and VQGAN
    • Discrete representation learning
    • Reconstruction quality
  • 11.2.2 Diffusion Models
    • Denoising diffusion models
    • Stable diffusion
    • Diffusion transformers
    • Classifier-free guidance
  • 11.2.3 Autoregressive Models
    • PixelCNN and PixelRNN
    • Autoregressive transformers
    • Masked language modeling
    • Bidirectional generation

11.3 Audio and Video

  • 11.3.1 Audio Processing
    • Speech recognition
    • Text-to-speech
    • Audio generation
    • Music modeling
  • 11.3.2 Video Understanding
    • Video transformers
    • Temporal modeling
    • Action recognition
    • Video generation
  • 11.3.3 Multimodal Integration
    • Audio-visual learning
    • Cross-modal retrieval
    • Multimodal reasoning
    • Unified architectures

Module 12: Research and Advanced Topics

Cutting-edge developments and research directions

12.1 Emerging Architectures

  • 12.1.1 Alternative Architectures
    • State space models
    • Retrieval-augmented generation
    • Memory networks
    • Neural Turing machines
  • 12.1.2 Efficiency Improvements
    • Linear attention
    • Sparse transformers
    • Efficient architectures
    • Mobile-friendly models
  • 12.1.3 Scaling Laws
    • Compute scaling
    • Data scaling
    • Parameter scaling
    • Emergence and phase transitions

12.2 Advanced Training Techniques

  • 12.2.1 Self-Supervised Learning
    • Contrastive learning
    • Masked language modeling
    • Next sentence prediction
    • Pretext tasks
  • 12.2.2 Few-Shot Learning
    • Meta-learning
    • In-context learning
    • Prompt engineering
    • Chain-of-thought reasoning
  • 12.2.3 Continual Learning
    • Lifelong learning
    • Catastrophic forgetting
    • Elastic weight consolidation
    • Progressive neural networks

12.3 Evaluation and Benchmarking

  • 12.3.1 Evaluation Frameworks
    • Standardized benchmarks
    • Evaluation metrics
    • Human evaluation
    • Automated evaluation
  • 12.3.2 Bias and Fairness
    • Bias detection
    • Fairness metrics
    • Debiasing techniques
    • Ethical considerations
  • 12.3.3 Interpretability
    • Attention visualization
    • Gradient-based methods
    • Concept activation vectors
    • Mechanistic interpretability

Each subtopic at the lowest level (e.g., 1.1.1, 1.1.2) represents a complete lesson that can be developed into a step-by-step tutorial with code examples, intuitive explanations, and practical exercises.

I will move a bunch of these into optional?

Top comments (0)