Voice AI listens (ASR), understands (NLU), and decides (Dialog Management).
But decisions aren't responses.
The system knows:
โถ๏ธ Action: inform
โถ๏ธ Flight: booked
โถ๏ธ Destination: Paris
โถ๏ธ Date: Dec 20
โถ๏ธ Confirmation: AB123
That's not what we say to a user.
This is where ๐ก๐๐ (Natural Language Generation) comes in.

It transforms structured data into natural speech:
Example:
๐ค "Great news! Your flight to Paris on December 20th is confirmed. Your confirmation number is AB123. Have a wonderful trip!"
๐ง๐ต๐ฒ ๐ก๐๐ ๐ฃ๐ถ๐ฝ๐ฒ๐น๐ถ๐ป๐ฒ:
1๏ธโฃ ๐๐ผ๐ป๐๐ฒ๐ป๐ ๐ฃ๐น๐ฎ๐ป๐ป๐ถ๐ป๐ด
๐น"What information to convey?"
๐นSelect facts, order them, prioritize.
2๏ธโฃ ๐ฆ๐ฒ๐ป๐๐ฒ๐ป๐ฐ๐ฒ ๐ฃ๐น๐ฎ๐ป๐ป๐ถ๐ป๐ด
๐น"How to structure it?"
๐นOne sentence or multiple?
๐นCombine facts?
3๏ธโฃ ๐ฆ๐๐ฟ๐ณ๐ฎ๐ฐ๐ฒ ๐ฅ๐ฒ๐ฎ๐น๐ถ๐๐ฎ๐๐ถ๐ผ๐ป
๐น"What exact words to use?" .
๐นGrammar, vocabulary, tone, fluency.
๐ง๐ต๐ฒ ๐ฒ๐๐ผ๐น๐๐๐ถ๐ผ๐ป:
๐นTemplates โ slot-filling.
๐นStatistical โ n-grams, HMMs.
๐นNeural โ Seq2Seq, Transformers.
๐นLLMs โ GPT, Claude (SOTA) .
Below are ๐ฟ๐ฒ๐ฐ๐ผ๐บ๐บ๐ฒ๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ปs based on use case:
๐นNeed predictability โ Templates.
๐นNeed natural variety โ LLM.
๐นNeed both โ Hybrid (LLM + guardrails).
The difference between a robotic assistant and a delightful one? NLG.
Top comments (0)