We've covered how Voice AI listens (ASR), understands (NLU), decides (Dialog Management), remembers (Context), and writes (NLG).
Now for the final piece: ๐ Making it speak.
That's TTS - Text-to-Speech.

๐ง๐ต๐ฒ ๐ง๐ฟ๐ฎ๐ป๐๐ณ๐ผ๐ฟ๐บ๐ฎ๐๐ถ๐ผ๐ป:
Input: "Great news! Your flight to Paris is confirmed."
Output: ใฐ๏ธใฐ๏ธใฐ๏ธ (audio waveform).
๐ง๐ต๐ฒ ๐ง๐ง๐ฆ ๐ฃ๐ถ๐ฝ๐ฒ๐น๐ถ๐ป๐ฒ:
1๏ธโฃ ๐ง๐ฒ๐
๐ ๐๐ป๐ฎ๐น๐๐๐ถ๐
โข "How to pronounce this?"
โข Normalization ($50 โ "fifty dollars")
โข Grapheme-to-phoneme conversion
โข Homograph resolution (read vs read)
2๏ธโฃ ๐ฃ๐ฟ๐ผ๐๐ผ๐ฑ๐ ๐ฃ๐ฟ๐ฒ๐ฑ๐ถ๐ฐ๐๐ถ๐ผ๐ป
โข How should it sound?
โข Pitch contour (intonation)
โข Duration (speed)
โข Stress & emphasis
โข Pauses
3๏ธโฃ ๐๐ฐ๐ผ๐๐๐๐ถ๐ฐ ๐ ๐ผ๐ฑ๐ฒ๐น
โข Generate mel spectrogram.
โข Tacotron 2, FastSpeech 2, VITS.
โข Maps phonemes โ audio features.
4๏ธโฃ ๐ฉ๐ผ๐ฐ๐ผ๐ฑ๐ฒ๐ฟ
โข Convert to audio waveform.
โข HiFi-GAN, WaveGlow, WaveNet.
โข Spectrogram โ actual audio.
๐ฏ And that closes the loop:
Listen โ Think โ Speak
Thatโs the full Voice AI pipeline.
Thanks for following along - next, I'll likely recap the full system and share a few real-world failure modes that make or break Voice AI in production. More coming soon. Keep building!!
Cheers!!
Top comments (0)