DEV Community

Muhammad Atif Iqbal
Muhammad Atif Iqbal

Posted on

What is astype() function in Python

Understanding astype() in Python

The astype() function is a powerful method in Python, primarily used in the pandas library for converting a column or a dataset in a DataFrame or Series to a specific data type. It is also available in NumPy for casting array elements to a different type.


Basic Usage of astype()

The astype() function is used to cast the data type of a pandas object (like a Series or DataFrame) or a NumPy array into another type.

Syntax for pandas:

DataFrame.astype(dtype, copy=True, errors='raise')
Enter fullscreen mode Exit fullscreen mode

Syntax for NumPy:

ndarray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
Enter fullscreen mode Exit fullscreen mode

Key Parameters

1. dtype

The target data type to which you want to convert the data. This can be specified using:

  • A single type (e.g., float, int, str).
  • A dictionary mapping column names to types (for pandas DataFrames).

2. copy (pandas and NumPy)

  • Default: True
  • Purpose: Whether to return a copy of the original data (if True) or modify it in place (if False).

3. errors (pandas only)

  • Options:
    • 'raise' (default): Raise an error if conversion fails.
    • 'ignore': Silently ignore errors.

4. order (NumPy only)

  • Controls the memory layout of the output array. Options:
    • 'C': C-contiguous order.
    • 'F': Fortran-contiguous order.
    • 'A': Use Fortran order if input is Fortran-contiguous, otherwise C order.
    • 'K': Match the layout of the input array.

5. casting (NumPy only)

  • Controls casting behavior:
    • 'no': No casting allowed.
    • 'equiv': Only byte-order changes allowed.
    • 'safe': Only casts that preserve values are allowed.
    • 'same_kind': Only safe casts or casts within a kind (e.g., float -> int) are allowed.
    • 'unsafe': Any data conversion is allowed.

6. subok (NumPy only)

  • If True, sub-classes are passed through; if False, the returned array will be a base-class array.

Examples

1. Basic Conversion in pandas

import pandas as pd

# Example DataFrame
df = pd.DataFrame({'A': ['1', '2', '3'], 'B': [1.5, 2.5, 3.5]})

# Convert column 'A' to integer
df['A'] = df['A'].astype(int)
print(df.dtypes)
Enter fullscreen mode Exit fullscreen mode

Output:

A     int64
B    float64
dtype: object
Enter fullscreen mode Exit fullscreen mode

2. Dictionary Mapping for Multiple Columns

# Convert multiple columns
df = df.astype({'A': float, 'B': int})
print(df.dtypes)
Enter fullscreen mode Exit fullscreen mode

Output:

A    float64
B      int64
dtype: object
Enter fullscreen mode Exit fullscreen mode

3. Using errors='ignore'

df = pd.DataFrame({'A': ['1', 'two', '3'], 'B': [1.5, 2.5, 3.5]})

# Attempt conversion with errors='ignore'
df['A'] = df['A'].astype(int, errors='ignore')
print(df)
Enter fullscreen mode Exit fullscreen mode

Output:

      A    B
0     1  1.5
1   two  2.5
2     3  3.5
Enter fullscreen mode Exit fullscreen mode
  • Conversion fails for 'two', but no error is raised.

4. Using astype() in NumPy

import numpy as np

# Example array
arr = np.array([1.1, 2.2, 3.3])

# Convert to integer
arr_int = arr.astype(int)
print(arr_int)
Enter fullscreen mode Exit fullscreen mode

Output:

[1 2 3]
Enter fullscreen mode Exit fullscreen mode

5. Casting in NumPy with casting='safe'

arr = np.array([1.1, 2.2, 3.3])

# Attempt an unsafe conversion
try:
    arr_str = arr.astype(str, casting='safe')
except TypeError as e:
    print(e)
Enter fullscreen mode Exit fullscreen mode

Output:

Cannot cast array data from dtype('float64') to dtype('<U32') according to the rule 'safe'
Enter fullscreen mode Exit fullscreen mode

6. Handling Non-Numeric Types in pandas

df = pd.DataFrame({'A': ['2022-01-01', '2023-01-01'], 'B': ['True', 'False']})

# Convert to datetime and boolean
df['A'] = pd.to_datetime(df['A'])
df['B'] = df['B'].astype(bool)
print(df.dtypes)
Enter fullscreen mode Exit fullscreen mode

Output:

A    datetime64[ns]
B             bool
dtype: object
Enter fullscreen mode Exit fullscreen mode

7. Memory Optimization Using astype()

Code:

import pandas as pd

# Original DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.1, 2.2, 3.3]})
print("Original memory usage:")
print(df.memory_usage())

# Downcast numerical types
df['A'] = df['A'].astype('int8')
df['B'] = df['B'].astype('float32')

print("Optimized memory usage:")
print(df.memory_usage())
Enter fullscreen mode Exit fullscreen mode

Output:

Before Optimization (Original Memory Usage):

Index    128
A         24
B         24
dtype: int64
Enter fullscreen mode Exit fullscreen mode

After Optimization (Optimized Memory Usage):

Index    128
A          3
B         12
dtype: int64
Enter fullscreen mode Exit fullscreen mode

Explanation:

  • Original Memory Usage:

    • Column A as int64 uses 24 bytes (8 bytes per element × 3 elements).
    • Column B as float64 uses 24 bytes (8 bytes per element × 3 elements).
  • Optimized Memory Usage:

    • Column A as int8 uses 3 bytes (1 byte per element × 3 elements).
    • Column B as float32 uses 12 bytes (4 bytes per element × 3 elements).

The memory usage is significantly reduced by using smaller data types, especially when working with large datasets.

Common Pitfalls

  1. Invalid Conversion: Converting incompatible types (e.g., strings to numeric types when non-numeric values exist).
   df = pd.DataFrame({'A': ['1', 'two', '3']})
   df['A'] = df['A'].astype(int)  # This will raise a ValueError
Enter fullscreen mode Exit fullscreen mode
  1. Silent Errors with errors='ignore': Use with caution as it may silently fail to convert.

  2. Loss of Precision: Converting from a higher-precision type (e.g., float64) to a lower-precision type (e.g., float32).


Advanced Examples

1. Complex Data Type Casting

df = pd.DataFrame({'A': ['1.1', '2.2', '3.3']})

# Cast to float and then to int
df['A'] = df['A'].astype(float).astype(int)
print(df)
Enter fullscreen mode Exit fullscreen mode

Output:

   A
0  1
1  2
2  3
Enter fullscreen mode Exit fullscreen mode

2. Using astype() in NumPy for Structured Arrays

# Structured array
data = np.array([(1, 2.5), (2, 3.5)], dtype=[('x', 'i4'), ('y', 'f4')])

# Convert data type
data = data.astype([('x', 'f8'), ('y', 'i8')])
print(data)
Enter fullscreen mode Exit fullscreen mode

Output:

[(1., 2) (2., 3)]
Enter fullscreen mode Exit fullscreen mode

Summary

The astype() function is a versatile tool for data type conversion in both pandas and NumPy. It allows fine-grained control over casting behavior, memory optimization, and error handling. Proper use of its parameters, such as errors in pandas and casting in NumPy, ensures robust and efficient data type transformations.

Top comments (0)