In our last post in this series, we talked about Containerizing a .NET 4.x Application for deployment onto AWS, and as you may have seen it was a somewhat convoluted affair. Containerizing a .NET Core type application is much easier, because a lot of the hoops that you must leap through to manage a Windows container will not be necessary. Instead, all AWS products, as well as IDEs, will support this out the gate.
Using Visual Studio
We have already gone through adding container support using Visual Studio, and that we are doing it now using a .NET Core-based application does not change that part of the process at all. What does change, however, is the ease of getting the newly containerized application into AWS. Once the Docker file has been added, the βPublish to AWSβ options when right-clicking on the project name in the Solution Explorer is greatly expanded. Since our objective is to get this application deployed to Amazon ECR, make the choice to Push Container Images to Amazon Elastic Container Registry and click the Publish button. You will see the process walk through a few steps and it will end with a message stating that the image has been successfully deployed into ECR.
Using JetBrains Rider
The process of adding a container using JetBrains Rider is very similar to the process used in Visual Studio. Open your application in Rider, right-click the project, select Add, and then Docker Support as shown in Figure 1.
Figure 1. Adding Docker Support in JetBrains Rider.
This will bring up a window where you select the Target OS, in this case, Linux. Once you have this finished you will see a Dockerfile show up in your solution. Unfortunately, the AWS Toolkit for Rider does not currently support deploying the new container image to ECR. This means that any deployment to the cloud must be done with the AWS CLI or the AWS Tools for Powershell and would be the same as the upload process used when storing a Windows container in ECR that we went over in an earlier post.
As you can see, containerizing a .NET Core-based application is much easier to do as well as easier to deploy into AWS.
Top comments (0)