*My post explains where() and count_nonzero().
argwhere() can get the 2D tensor of the zero or more indices of non-zero elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
argwhere()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
).
import torch
my_tensor = torch.tensor(5)
torch.argwhere(input=my_tensor)
my_tensor.argwhere()
# tensor([], size=(1, 0), dtype=torch.int64)
my_tensor = torch.tensor([5, 0, 4, 0, 3, 1])
torch.argwhere(input=my_tensor)
# tensor([[0], [2], [4], [5]])
my_tensor = torch.tensor([5., 0., 4., 0., 3., 1])
torch.argwhere(input=my_tensor)
# tensor([[0], [2], [4], [5]])
my_tensor = torch.tensor([5.+0.j, 0.+0.j, 4.+0.j, 0.+0.j, 3.+0.j, 1.+0.j])
torch.argwhere(input=my_tensor)
# tensor([[0], [2], [4], [5]])
my_tensor = torch.tensor([True, False, True, False, True, False])
torch.argwhere(input=my_tensor)
# tensor([[0], [2], [4]])
my_tensor = torch.tensor([[5, 0, 4],
[0, 3, 1]])
torch.argwhere(input=my_tensor)
# tensor([[0, 0], [0, 2], [1, 1], [1, 2]])
my_tensor = torch.tensor([[[5, 0, 4], [0, 3, 1]],
[[0, 7, 0], [0, 6, 8]]])
torch.argwhere(input=my_tensor)
# tensor([[0, 0, 0],
# [0, 0, 2],
# [0, 1, 1],
# [0, 1, 2],
# [1, 0, 1],
# [1, 1, 1],
# [1, 1, 2]])
nonzero() can get the 2D tensor of the zero or more indices of non-zero elements or the one or more 1D tensors of the zero or more indices of non-zero elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
nonzero()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - There is
as_tuple
argument withtorch
or a tensor(Optional-Default:False
-Type:bool
): *Memos:- If
as_tuple
isTrue
, the tuple of zero or more 1D tensors is returned.
- If
- There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
import torch
my_tensor = torch.tensor(5)
torch.nonzero(input=my_tensor)
my_tensor.nonzero()
# tensor([], size=(1, 0), dtype=torch.int64)
torch.nonzero(input=my_tensor, as_tuple=True)
# (tensor([0]),)
my_tensor = torch.tensor([5, 0, 4, 0, 3, 1])
torch.nonzero(input=my_tensor)
my_tensor.nonzero()
# tensor([[0], [2], [4], [5]])
torch.nonzero(input=my_tensor, as_tuple=True)
# (tensor([0, 2, 4, 5]),)
my_tensor = torch.tensor([5., 0., 4., 0., 3., 1])
torch.nonzero(input=my_tensor)
# tensor([[0], [2], [4], [5]])
my_tensor = torch.tensor([5.+0.j, 0.+0.j, 4.+0.j, 0.+0.j, 3.+0.j, 1.+0.j])
torch.nonzero(input=my_tensor)
# tensor([[0], [2], [4], [5]])
my_tensor = torch.tensor([True, False, True, False, True, False])
torch.nonzero(input=my_tensor)
# tensor([[0], [2], [4]])
my_tensor = torch.tensor([[5, 0, 4],
[0, 3, 1]])
torch.nonzero(input=my_tensor)
# tensor([[0, 0], [0, 2], [1, 1], [1, 2]])
torch.nonzero(input=my_tensor, as_tuple=True)
# (tensor([0, 0, 1, 1]),
# tensor([0, 2, 1, 2]))
my_tensor = torch.tensor([[[5, 0, 4], [0, 3, 1]],
[[0, 7, 0], [0, 6, 8]]])
torch.nonzero(input=my_tensor)
# tensor([[0, 0, 0],
# [0, 0, 2],
# [0, 1, 1],
# [0, 1, 2],
# [1, 0, 1],
# [1, 1, 1],
# [1, 1, 2]])
torch.nonzero(input=my_tensor, as_tuple=True)
# (tensor([0, 0, 0, 0, 1, 1, 1]),
# tensor([0, 0, 1, 1, 0, 1, 1]),
# tensor([0, 2, 1, 2, 1, 1, 2]))
Top comments (0)