DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

count_nonzero in PyTorch

Buy Me a Coffee

*Memos:

count_nonzero() can get the 0D or more D tensor of the count number of zero or more non-zero elements from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • count_nonzero() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is dim(Optional-Type:int, tuple of int or list of int).
import torch

my_tensor = torch.tensor(5)

torch.count_nonzero(input=my_tensor)
my_tensor.count_nonzero()
torch.count_nonzero(input=my_tensor, dim=0)
torch.count_nonzero(input=my_tensor, dim=-1)
torch.count_nonzero(input=my_tensor, dim=(0,))
torch.count_nonzero(input=my_tensor, dim=(-1,))
# tensor(1)

my_tensor = torch.tensor([5, 0, 4, 0, 3, 1])

torch.count_nonzero(input=my_tensor)
torch.count_nonzero(input=my_tensor, dim=0)
torch.count_nonzero(input=my_tensor, dim=-1)
torch.count_nonzero(input=my_tensor, dim=(0,))
torch.count_nonzero(input=my_tensor, dim=(-1,))
# tensor(4)

my_tensor = torch.tensor([5., 0., 4., 0., 3., 1.])

torch.count_nonzero(input=my_tensor)
torch.count_nonzero(input=my_tensor, dim=0)
torch.count_nonzero(input=my_tensor, dim=-1)
torch.count_nonzero(input=my_tensor, dim=(0,))
torch.count_nonzero(input=my_tensor, dim=(-1,))
# tensor(4)

my_tensor = torch.tensor([5.+0.j, 0.+0.j, 4.+0.j, 0.+0.j, 3.+0.j, 1.+0.j])

torch.count_nonzero(input=my_tensor)
# tensor(4)

my_tensor = torch.tensor([True, False, True, False, True, False])

torch.count_nonzero(input=my_tensor)
# tensor(3)

my_tensor = torch.tensor([[5, 0, 4],
                          [0, 3, 1]])
torch.count_nonzero(input=my_tensor)
torch.count_nonzero(input=my_tensor, dim=(0, 1))
torch.count_nonzero(input=my_tensor, dim=(0, -1))
torch.count_nonzero(input=my_tensor, dim=(1, 0))
torch.count_nonzero(input=my_tensor, dim=(1, -2))
torch.count_nonzero(input=my_tensor, dim=(-1, 0))
torch.count_nonzero(input=my_tensor, dim=(-1, -2))
torch.count_nonzero(input=my_tensor, dim=(-2, 1))
torch.count_nonzero(input=my_tensor, dim=(-2, -1))
# tensor(4)

torch.count_nonzero(input=my_tensor, dim=0)
torch.count_nonzero(input=my_tensor, dim=-2)
torch.count_nonzero(input=my_tensor, dim=(0,))
torch.count_nonzero(input=my_tensor, dim=(-2,))
# tensor([1, 1, 2])

torch.count_nonzero(input=my_tensor, dim=1)
torch.count_nonzero(input=my_tensor, dim=-1)
torch.count_nonzero(input=my_tensor, dim=(1,))
torch.count_nonzero(input=my_tensor, dim=(-1,))
# tensor([2, 2])

my_tensor = torch.tensor([[[5, 0, 4], [0, 3, 1]],
                          [[0, 7, 0], [0, 6, 8]]])
torch.count_nonzero(input=my_tensor)
# tensor(7)

torch.count_nonzero(input=my_tensor, dim=0)
torch.count_nonzero(input=my_tensor, dim=-3)
torch.count_nonzero(input=my_tensor, dim=(0,))
torch.count_nonzero(input=my_tensor, dim=(-3,))
# tensor([[1, 1, 1], [0, 2, 2]])

torch.count_nonzero(input=my_tensor, dim=1)
torch.count_nonzero(input=my_tensor, dim=-2)
torch.count_nonzero(input=my_tensor, dim=(1,))
torch.count_nonzero(input=my_tensor, dim=(-2,))
# tensor([[1, 1, 2], [0, 2, 1]])

torch.count_nonzero(input=my_tensor, dim=2)
torch.count_nonzero(input=my_tensor, dim=-1)
torch.count_nonzero(input=my_tensor, dim=(2,))
torch.count_nonzero(input=my_tensor, dim=(-1,))
# tensor([[2, 2], [1, 2]])

torch.count_nonzero(input=my_tensor, dim=(0, 1))
torch.count_nonzero(input=my_tensor, dim=(0, -2))
torch.count_nonzero(input=my_tensor, dim=(1, 0))
torch.count_nonzero(input=my_tensor, dim=(1, -3))
torch.count_nonzero(input=my_tensor, dim=(-2, 0))
torch.count_nonzero(input=my_tensor, dim=(-2, -3))
torch.count_nonzero(input=my_tensor, dim=(-3, 1))
torch.count_nonzero(input=my_tensor, dim=(-3, -2))
# tensor([1, 3, 3])

torch.count_nonzero(input=my_tensor, dim=(0, 2))
torch.count_nonzero(input=my_tensor, dim=(0, -1))
torch.count_nonzero(input=my_tensor, dim=(2, 0))
torch.count_nonzero(input=my_tensor, dim=(2, -3))
torch.count_nonzero(input=my_tensor, dim=(-1, 0))
torch.count_nonzero(input=my_tensor, dim=(-1, -3))
torch.count_nonzero(input=my_tensor, dim=(-3, 2))
torch.count_nonzero(input=my_tensor, dim=(-3, -1))
# tensor([3, 4])

torch.count_nonzero(input=my_tensor, dim=(1, 2))
torch.count_nonzero(input=my_tensor, dim=(1, -1))
torch.count_nonzero(input=my_tensor, dim=(2, 1))
torch.count_nonzero(input=my_tensor, dim=(2, -2))
torch.count_nonzero(input=my_tensor, dim=(-1, 1))
torch.count_nonzero(input=my_tensor, dim=(-1, -2))
torch.count_nonzero(input=my_tensor, dim=(-2, 2))
torch.count_nonzero(input=my_tensor, dim=(-2, -1))
# tensor([4, 3])
Enter fullscreen mode Exit fullscreen mode

Heroku

Build apps, not infrastructure.

Dealing with servers, hardware, and infrastructure can take up your valuable time. Discover the benefits of Heroku, the PaaS of choice for developers since 2007.

Visit Site

Top comments (0)

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more