DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

where in PyTorch

Buy Me a Coffee

*Memos:

where() can get the 0D or more D tensor of zero or more elements from two of the 0D or more D tensors of the zero or more elements selected either from input or other tensor, depending on condition as shown below:

*Memos:

  • where() can be used with torch or a tensor.
  • The 1st argument with torch or a tensor is condition(Required-Type:tensor of bool).
  • The 2nd argument(input) with torch or using a tensor(Required-Type:tensor or scalar of int, float, complex or bool): *Memos:
    • torch must use input with a scalar without condition=, input= and other=.
    • A tensor cannot use input with a scalar.
  • The 3rd argument with torch or the 2nd argument with a tensor is other(Required-Type:tensor or scalar of int, float, complex or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • If condition is True, the element of input or a tensor is selected otherwise the element of other is selected.
import torch

tensor1 = torch.tensor([[5, 0, 4],
                        [0, 3, 1]])
tensor2 = torch.tensor([60, 70, 80])

torch.where(condition=tensor1 > 2, input=tensor1, other=tensor2)
tensor1.where(condition=tensor1 > 2, other=tensor2)
# tensor([[5, 70, 4],
#         [60, 3, 80]])

torch.where(condition=tensor1 > 2, input=tensor2, other=tensor1)
# tensor([[60, 0, 80],
#         [0, 70, 1]])

torch.where(tensor1 > 2, 10, tensor2)
# tensor([[10, 70, 10],
#         [60, 10, 80]])

torch.where(condition=tensor1 > 2, input=tensor1, other=10)
# tensor([[5, 10, 4],
#         [10, 3, 10]])

torch.where(tensor1 > 2, 10, 20)
# tensor([[10, 20, 10],
#         [20, 10, 20]])

tensor1 = torch.tensor([[5., 0., 4.],
                        [0., 3., 1.]])
tensor2 = torch.tensor([60., 70., 80.])
tensor3 = torch.tensor(True)
torch.where(condition=tensor3, input=tensor1, other=tensor2)
# tensor([[5., 0., 4.],
#         [0., 3., 1.]])

torch.where(tensor3, 5., other=tensor2)
# tensor([5., 5., 5.])

torch.where(condition=tensor3, input=tensor1, other=60.)
# tensor([[5., 0., 4.],
#         [0., 3., 1.]])

torch.where(tensor3, 5., other=60.)
# tensor(5.)

tensor1 = torch.tensor([[5.+0.j, 0.+0.j, 4.+0.j],
                        [0.+0.j, 3.+0.j, 1.+0.j]])
tensor2 = torch.tensor([60.+0.j, 70.+0.j, 80.+0.j])
tensor3 = torch.tensor(False)
torch.where(condition=tensor3, input=tensor1, other=tensor2)
# tensor([[60.+0.j, 70.+0.j, 80.+0.j],
#         [60.+0.j, 70.+0.j, 80.+0.j]])

torch.where(tensor3, 5.+0.j, other=tensor2)
# tensor([60.+0.j, 70.+0.j, 80.+0.j])

torch.where(condition=tensor3, input=tensor1, other=60.+0.j)
# tensor([[60.+0.j, 60.+0.j, 60.+0.j],
#         [60.+0.j, 60.+0.j, 60.+0.j]])

torch.where(tensor3, 5.+0.j, other=60.+0.j)
# tensor(60.+0.j)

tensor1 = torch.tensor([[True, False, True],
                        [False, True, False]])
tensor2 = torch.tensor([False, True, False])
tensor3 = torch.tensor(True)
torch.where(condition=tensor3, input=tensor1, other=tensor2)
# tensor([[True, False, True],
#         [False, True, False]])

torch.where(tensor3, True, other=tensor2)
# tensor([True, True, True])

torch.where(condition=tensor3, input=tensor1, other=False)
# tensor([[True, False, True],
#         [False, True, False]])

torch.where(tensor3, True, other=False)
# tensor(True)

tensor1 = torch.tensor([[[5, 0, 4], [0, 3, 1]],
                          [[0, 7, 0], [0, 6, 8]]])
tensor2 = torch.tensor([60, 70, 80])

torch.where(condition=tensor1 > 2, input=tensor1, other=tensor2)
# tensor([[[5, 70, 4],
#          [60, 3, 80]],
#         [[60, 7, 80],
#          [60, 6, 8]]])

torch.where(condition=tensor1 > 2, input=tensor2, other=tensor1)
# tensor([[[60, 0, 80],
#          [0, 70, 1]],
#         [[0, 70, 0],
#          [0, 70, 80]]])

torch.where(tensor1 > 2, 10, tensor2)
# tensor([[[10, 70, 10],
#          [60, 10, 80]],
#         [[60, 10, 80],
#          [60, 10, 10]]])

torch.where(condition=tensor1 > 2, input=tensor1, other=10)
# tensor([[[5, 10, 4],
#          [10, 3, 10]],
#         [[10, 7, 10],
#          [10, 6, 8]]])

torch.where(tensor1 > 2, 10, 20)
# tensor([[[10, 20, 10],
#          [20, 10, 20]],
#         [[20, 10, 20],
#          [20, 10, 10]]])
Enter fullscreen mode Exit fullscreen mode

Heroku

Build apps, not infrastructure.

Dealing with servers, hardware, and infrastructure can take up your valuable time. Discover the benefits of Heroku, the PaaS of choice for developers since 2007.

Visit Site

Top comments (0)

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more