DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

cat in PyTorch

Buy Me a Coffee

*Memos:

cat() can get the 1D or more D concatenated tensor of zero or more elements from the one or more 1D or more D tensors of zero or more elements as shown below:

*Memos:

  • cat() can be used with torch but not with a tensor.
  • The 1st argument with torch is tensors(Required-Type:tuple or list of tensor of int, float, complex or bool). *The size of tensors must be the same except dimension 0.
  • The 2nd argument with torch is dim(Optional-Default:0-Type:int).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • concat() is the alias of cat().
import torch

tensor1 = torch.tensor([2, 7, 4])
tensor2 = torch.tensor([8, 3, 2])
tensor3 = torch.tensor([5, 0, 8])

torch.cat(tensors=(tensor1, tensor2, tensor3))
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=0)
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=-1)
# tensor([2, 7, 4, 8, 3, 2, 5, 0, 8])

tensor1 = torch.tensor([2, 7])
tensor2 = torch.tensor([8, 3, 2])
tensor3 = torch.tensor([5])

torch.cat(tensors=(tensor1, tensor2, tensor3))
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=0)
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=-1)
# tensor([2, 7, 8, 3, 2, 5])

tensor1 = torch.tensor([[2, 7, 4], [8, 3, 2]])
tensor2 = torch.tensor([[5, 0, 8], [3, 6, 1]])
tensor3 = torch.tensor([[9, 4, 7], [1, 0, 5]])

torch.cat(tensors=(tensor1, tensor2, tensor3))
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=0)
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=-2)
# tensor([[2, 7, 4],
#         [8, 3, 2],
#         [5, 0, 8],
#         [3, 6, 1],
#         [9, 4, 7],
#         [1, 0, 5]])

torch.cat(tensors=(tensor1, tensor2, tensor3), dim=1)
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=-1)
# tensor([[2, 7, 4, 5, 0, 8, 9, 4, 7],
#         [8, 3, 2, 3, 6, 1, 1, 0, 5]])

tensor1 = torch.tensor([[2, 7, 4], [8, 3, 2]])
tensor2 = torch.tensor([[5, 0, 8], [3, 6, 1], [9, 4, 7]])
tensor3 = torch.tensor([[1, 0, 5]])

torch.cat(tensors=(tensor1, tensor2, tensor3))
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=0)
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=-2)
# tensor([[2, 7, 4],
#        [8, 3, 2],
#        [5, 0, 8],
#        [3, 6, 1],
#        [9, 4, 7],
#        [1, 0, 5]])

tensor1 = torch.tensor([[[2, 7, 4], [8, 3, 2]],
                        [[5, 0, 8], [3, 6, 1]]])
tensor2 = torch.tensor([[[9, 4, 7], [1, 0, 5]],
                        [[6, 7, 4], [2, 1, 9]]])
tensor3 = torch.tensor([[[1, 6, 3], [9, 6, 0]],
                        [[0, 8, 7], [3, 5, 2]]])
torch.cat(tensors=(tensor1, tensor2, tensor3))
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=0)
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=-3)
# tensor([[[2, 7, 4], [8, 3, 2]],
#         [[5, 0, 8], [3, 6, 1]],
#         [[9, 4, 7], [1, 0, 5]],
#         [[6, 7, 4], [2, 1, 9]],
#         [[1, 6, 3], [9, 6, 0]],
#         [[0, 8, 7], [3, 5, 2]]])

torch.cat(tensors=(tensor1, tensor2, tensor3), dim=1)
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=-2)
# tensor([[[2, 7, 4], 
#          [8, 3, 2],
#          [9, 4, 7],
#          [1, 0, 5],
#          [1, 6, 3],
#          [9, 6, 0]],
#         [[5, 0, 8],
#          [3, 6, 1],
#          [6, 7, 4],
#          [2, 1, 9],
#          [0, 8, 7],
#          [3, 5, 2]]])

torch.cat(tensors=(tensor1, tensor2, tensor3), dim=2)
torch.cat(tensors=(tensor1, tensor2, tensor3), dim=-1)
# tensor([[[2, 7, 4, 9, 4, 7, 1, 6, 3],
#          [8, 3, 2, 1, 0, 5, 9, 6, 0]],
#         [[5, 0, 8, 6, 7, 4, 0, 8, 7],
#          [3, 6, 1, 2, 1, 9, 3, 5, 2]]])

tensor1 = torch.tensor([[[2., 7., 4.], [8., 3., 2.]],
                        [[5., 0., 8.], [3., 6., 1.]]])
tensor2 = torch.tensor([[[9., 4., 7.], [1., 0., 5.]],
                        [[6., 7., 4.], [2., 1., 9.]]])
tensor3 = torch.tensor([[[1., 6., 3.], [9., 6., 0.]],
                        [[0., 8., 7.], [3., 5., 2.]]])
torch.cat(tensors=(tensor1, tensor2, tensor3))
# tensor([[[2., 7., 4.], [8., 3., 2.]],
#         [[5., 0., 8.], [3., 6., 1.]],
#         [[9., 4., 7.], [1., 0., 5.]],
#         [[6., 7., 4.], [2., 1., 9.]],
#         [[1., 6., 3.], [9., 6., 0.]],
#         [[0., 8., 7.], [3., 5., 2.]]])

tensor1 = torch.tensor([[[2.+0.j, 7.+0.j, 4.+0.j],
                         [8.+0.j, 3.+0.j, 2.+0.j]],
                        [[5.+0.j, 0.+0.j, 8.+0.j],
                         [3.+0.j, 6.+0.j, 1.+0.j]]])
tensor2 = torch.tensor([[[9.+0.j, 4.+0.j, 7.+0.j],
                         [1.+0.j, 0.+0.j, 5.+0.j]],
                        [[6.+0.j, 7.+0.j, 4.+0.j],
                         [2.+0.j, 1.+0.j, 9.+0.j]]])
tensor3 = torch.tensor([[[1.+0.j, 6.+0.j, 3.+0.j],
                         [9.+0.j, 6.+0.j, 0.+0.j]],
                        [[0.+0.j, 8.+0.j, 7.+0.j],
                         [3.+0.j, 5.+0.j, 2.+0.j]]])
torch.cat(tensors=(tensor1, tensor2, tensor3))
# tensor([[[2.+0.j, 7.+0.j, 4.+0.j],
#          [8.+0.j, 3.+0.j, 2.+0.j]],
#         [[5.+0.j, 0.+0.j, 8.+0.j],
#          [3.+0.j, 6.+0.j, 1.+0.j]],
#         [[9.+0.j, 4.+0.j, 7.+0.j],
#          [1.+0.j, 0.+0.j, 5.+0.j]],
#         [[6.+0.j, 7.+0.j, 4.+0.j],
#          [2.+0.j, 1.+0.j, 9.+0.j]],
#         [[1.+0.j, 6.+0.j, 3.+0.j],
#          [9.+0.j, 6.+0.j, 0.+0.j]],
#         [[0.+0.j, 8.+0.j, 7.+0.j],
#          [3.+0.j, 5.+0.j, 2.+0.j]]])

tensor1 = torch.tensor([[[True, False, True], [True, False, True]],
                        [[False, True, False], [False, True, False]]])
tensor2 = torch.tensor([[[False, True, False], [False, True, False]],
                        [[True, False, True], [True, False, True]]])
tensor3 = torch.tensor([[[True, False, True], [True, False, True]],
                        [[False, True, False], [False, True, False]]])
torch.cat(tensors=(tensor1, tensor2, tensor3))
# tensor([[[True, False, True], [True, False, True]],
#         [[False, True, False], [False, True, False]],
#         [[False, True, False], [False, True, False]],
#         [[True, False, True], [True, False, True]],
#         [[True, False, True], [True, False, True]],
#         [[False, True, False], [False, True, False]]])

tensor1 = torch.tensor([[[0, 1, 2]]])
tensor2 = torch.tensor([])
tensor3 = torch.tensor([[[0, 1, 2]]])

torch.cat(tensors=(tensor1, tensor2, tensor3))
# tensor([[[0., 1., 2.]],
#         [[0., 1., 2.]]])
Enter fullscreen mode Exit fullscreen mode

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more

Top comments (0)

Image of Docusign

🛠️ Bring your solution into Docusign. Reach over 1.6M customers.

Docusign is now extensible. Overcome challenges with disconnected products and inaccessible data by bringing your solutions into Docusign and publishing to 1.6M customers in the App Center.

Learn more